Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The unmanned underwater tracked bulldozer (UUTB) is an indispensable equipment for dredging and cleaning obstacles on the river bed in the flood season. The investigation on the interaction properties between the UUTB tracks and sediments provides foundation for the evaluation of operation performance when it works on the inland river bed. Based on the current worldwide research, the sediments mixed by sand, bentonite and water with sand content 0%, 10% and 20% were configured in this study to replace the real sediments on the inland river bed in China. The current pressure-sinkage model and shear stress-shear displacement model were discussed. Three different tracks were tested for the pressure-sinkage and the shear stress-shear displacement on the platform. The relationship between pressure and sinkage under sand content 0%, 10% and 20% are revealed based on the experimental results. The modulus of cohesive deformation and friction deformation of the sediments under said sand content are presented. The curves of shear stress and shear displacement are also obtained, which demonstrates the properties between the tracks and configured sediments under sand content 0%, 10% and 20%. The relationship between the tractive force and slip ratio with three different tracks under said sand content is also presented based on the quantitative analysis, which provides reference for the dynamics control and performance evaluation of UUTB on the inland river bed.

Go to article

Bibliography

  1.  C.B. Yang, M. Dong, L. Gu, Q. Li, X.D. Gao, “Study on soil thrust of crawler plate considering the shape of shoe thorn”, J. Beijing Inst. Technol. 35(11), 1118‒1121 (2015).
  2.  C.B. Yang, Research on the adhesion characteristics and optimization of high-speed track and soft ground, Beijing Institute of Technology, 2015.
  3.  X. Lü, Q. Zhou, and B. Fang, “Hydrodynamic performance of distributed pump-jet propulsion system for underwater vehicle,” J. Hydrodyn. 26(4), 523–530 (2014).
  4.  A. Yasui, K.Sunobe, and T. Murata “Development of underwater bulldozer systems”, J. Terramech. 10(4), 13‒20 (1973).
  5.  G. Yamauchi, K. Nagatani, T. Hashimoto, and K. Fujino, “Slip-compensated odometry for tracked vehicle on loose and weak slope”, J. Hydrodyn. 4(2), 2197‒4225 (2017).
  6.  F. Xu, Q.H. Rao, and W.B. Ma, “Predicting the sinkage of a moving tracked mining vehicle using a new rheological formulation for soft deep-sea sediment”, J. Hydrodyn. 36, 230‒237 (2018).
  7.  S. Hong, J.S. Choi, H.W. Kim, M.C. Won, S.C. Shin, J.S. Rhee, and H.N. Par, “A path tracking control algorithm for underwater mining vehicles”, J. Mech. Sci. Technol. 23(8), 2030‒2037 (2009).
  8.  S.M. Yoon, S. Hong, S.J. Park, J.S. Choi, H.W. Kim, and T.K. Yeu, “Track velocity control of crawler type underwater mining robot through shallow-water test”, J. Mech. Sci. Technol. 26(10), 3291‒3298 (2012).
  9.  K. Herzog, E. Schulte, M.A. Atmanand, and W. Schwarz, “Slip Control System for a Deep-Sea Mining Machine”, IEEE Trans. Autom. Sci. Eng. 4(2), 282‒286 (2007).
  10.  H. Grebe and E.S. Schulte, Determination of soil parameters based on the operational data of a ground operated tracked vehicle, pp. 149‒156, International Society of Offshore and Polar Engineers, 2005.
  11.  E. Schulte and W. Schwarz, “Simulation of Tracked Vehicle Performance on Deep Sea Soil Based on Soil Mechanical Laboratory Measurements in Bentonite Soil”, in Proceedings of The Eighth ISOPE Ocean Mining Symposium, 2009, pp. 276‒284.
  12.  L.Q. Song, “Geotechnical Properties of Oceanic Sediments in Polymetallic Nodules Belts”, Acta Oceanol. Sin., 19(2), 57‒67 (2000).
  13.  X.L. Chen, J.Z. Lu, T.W. Cui, L.Q. Tian, L.Q. Chen, and W.J. Zhao, “Coupling remote sensing retrieval with numerical simulation for SPM study—Taking Bohai Sea in China as a case”, Int. J. Appl. Earth Obs. Geoinf. 12(2), 203‒211 (2010).
  14.  S.J. Liu, C. Liu, and Y. Dai, “Research and development of deep-sea mining equipment”, Chin. J. Mech. Eng. 50(2), 8‒18 (2014).
  15.  Y. Dai and S.J. Liu, “Dynamic analysis of integrated linkage operation mode of deep-sea mining system”, J. Huazhong Univ. Sci. Tech.- Natural Sci. 40(S2), 39‒43 (2012).
  16.  Y. Dai and S.J. Liu, “Theoretical design and dynamic simulation of new mining paths of tracked miner on deep seafloor”, J. Cent. South Univ. 20(04), 918‒923 (2013).
  17.  Y. Dai and S.J. Liu, “Dynamic Analysis of the Seafloor Pilot Miner Based on Single-Body Vehicle Model and Discretized Track-Terrain Interaction Model”, China Ocean Eng. 24(01), 145‒160 (2010).
  18.  Y. Dai, H. Liu, T. Zhang, and S.J. Liu, “A study on the driving performance of seabed crawler mining vehicle”, Chinese Sci. Technol. Paper 10(10), 1203‒1208 (2015).
  19.  L. Li and S.L. Li, “Simulation of deep-sea surface Marine mud and study on surface mechanical properties”, Eng. Mech. 27(11), 213‒220 (2010).
  20.  M. Wang, X. Wang, and Y. Sun, “Tractive performance evaluation of seafloor tracked trencher based on laboratory mechanical measurements”, Int. J. Nav. Archit. Ocean Eng. 8(2), 177‒187 (2016).
  21.  M. Wang, X. Wang, and Y. Sun, “Traction Potential Analysis of Self-Propelled Seafloor Trencher Based on Mechanical Measurements in Bentonite Soil”, J. Harbin Inst. Technol. 24(1), 71‒80 (2017).
  22.  C. Yang, G. Yang, and Z. Liu, “A method for deducing pressure–sinkage of tracked vehicle in rough terrain considering moisture and sinkage speed”, J. Terramech. 79, 99‒113 (2018).
  23.  P. Siemaszko and Z. Meyer, “Static load test cure analysis based on soil field investigations”, Bull. Pol. Ac.: Tech. 67(2), 329‒337 (2019).
  24.  A. Sawicki, J. Mierczynski, and W. Swidzinski, “Basic set of experiments for determination of mechanical properties of sand”, Bull. Pol. Ac.: Tech. 62(1), 129‒137 (2014).
  25.  C. Janarthanan, K.Gopkumar, V.Sundaramoorthi, N.R. Ramesh, and G.A. Ramadass, “Influence of Grouser Geometrical Parameters of Deep-Sea Crawler Vehicle on Soft Clays”, J. Hydrodyn. 47:899‒912 (2018).
  26.  H. Mao, F. Kumi, and Q. Li, “Combining X-ray computed tomography with relevant techniques for analysing soil-root dynamics-an overview”, Acta Agric. Scand. Sect. B – Soil Plant Sci. 66(1), 1‒19 (2015).
  27.  T. Kato and M. Kamichika, “Determination of a crop coefficient for evapotranspiration in a sparse sorghum field”, Irrig. Drain., 55(2), 165‒175 (2010).
  28.  S. Hong, H.W. Kim, T. Yue, J.S. Choi, T.H. Lee, and J.K. Lee, “Technologies for Safe and Sustainable Mining of Deep-Seabed Minerals”, J. Hydrodyn. 65:95‒143 (2019).
  29.  Z.Y. Zuo, X.G. Li, C. Xu, “Responses of barley Albina and Xantha mutants deficient in magnesium chelatase to soil salinity”, Plant Soil Environ. 63(8), 348‒354 (2017).
  30.  C.L. Qi, Q.H. Rao, Q. Liu, and W.B. Ma, “Traction rheological properties of simulative soil for deep-sea sediment”, J. Hydrodyn. 37:61‒71 (2019).
  31.  B. Ali Abubaker, H.F. Yan, and L. Hong, “Enhancement of Depleted Loam Soil as Well as Cucumber Productivity Utilizing Biochar Under Water Stress”, Commun. Soil Sci. Plant Anal. 50(1), 49‒64 (2019).
  32.  W. Wei, Y. Xu, and S. Li, “Developing suppressive soil for root diseases of soybean with continuous long-term cropping of soybean in black soil of Northeast China”, Acta Agric. Scand. Sect. B – Soil Plant Sci. 65(3), 7 (2015).
  33.  J.Z. Li, S.J. Liu, and Y. Dai, “Effect of grouser height on tractive performance of tracked mining vehicle”, J. Hydrodyn. 39:2459‒2466 (2017).
  34.  D. Knez and A. Calicki, “Looking for a new source of natural proppants in Poland”, Bull. Pol. Ac.: Tech. 66(1), 3‒8 (2018).
  35.  M. Mitew-Czajewska, “Parametric study of deep excavation in clays”, Bull. Pol. Ac.: Tech. 66(5), 747‒754 (2018).
  36.  J. Liu, X.M. Liu, and J.M. Xie, “Influence of copper on transport and dissipation of lambda-cyhalothrin and cypermethrin in soils”, Pedosphere 23(3), 395‒401 (2013).
  37.  L.L. Chu, Y.H. Kang, and S.Q. Wan, “Effect of different water application intensity and irrigation amount treatments of microirrigation on soil-leaching coastal saline soils of North China”, J. Integr. Agric. 15(9), 2123‒2131 (2016).
  38.  J.Y. Wong, Theory of Ground Vehicles. John Wiley & Sons Inc, 2001.
  39.  J.Y. Wong, Terramechanics and Off-road Engineering. Elsevier, 2010.
  40.  J.Y. Wong, M. Garber, and J. Preston-Thomas, “Theoretical prediction and experimental substantiation of the ground pressure distribution and tractive performance of tracked vehicles”, Proc. Inst. Mech. Eng. Part D-J. Automob. Eng. (4), 265‒285 (1988).
  41.  E. Schulte, R. Handschuh, and W. Schwarz, “Transferability of soil mechanical parameters to traction potential calculation of a tracked vehicle”, in Proceedings of the Fifth Ocean Mining Symposium, 2003, pp. 123‒131.
  42.  Z. Janosi and B. Hanamoto, “Analytical determination of drawbar pull as a function of slip on tracked vehicles in deformable soils”, 1st Intern. Conference on Terrain-Vehicles Systems, 1961, pp. 1131‒1152.
  43.  M. Wang, C. Wu, and T. Ge, “Calibration and validation of tractive performance for seafloor tracked trencher”, J. Terramech. 66, 13‒25 (2016).
  44.  M. Wang, X.Y. Wang, Y.H. Sun, and Z.M. Gu, “Tractive performance evaluation of seafloor tracked trencher based on laboratory mechanical measurements”, Int. J. Nav. Archit. Ocean Eng. 8, 177‒187 (2016).
  45.  M.G. Bekker, Theory of land locomotion: the mechanics of vehicle mobility, pp. 221‒262, The University of Michigan Press, 1956.
  46.  M.G. Bekker, Theory of Land Locomotion, University of Michigan Press, 1962.
  47.  M.G. Bekker, Introduction to Terrain-vehicle Systems, University of Michigan Press, 1969.
  48.  A.R. Reece, “Principles of soil-vehicle mechanics”, Proc. Inst. Mech. Eng. Automob. Div. 180(1), 45‒66 (1965).
  49.  Y. Xu, H.Y. Wu, and L.B. Zuo, “Influence of shale tooth height of tracked vehicle on traction performance and its parameter determination”, Trans. Chinese Soc. Agric. Eng. 28(11), 68‒74 (2012).
Go to article

Authors and Affiliations

Yong Li
1
Dingchang He
1
Qiaorui Si
2

  1. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang, 212013, P. R. China
  2. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, 212013, P. R. China
Download PDF Download RIS Download Bibtex

Abstract

Temperature rise of the hub motor in distributed drive electric vehicles (DDEVs) under long-time and overload operating conditions brings parameter drift and degrades the performance of the motor. A novel online parameter identification method based on improved teaching-learning-based optimization (ITLBO) is proposed to estimate the stator resistance, ��-axis inductance, ��-axis inductance, and flux linkage of the hub motor with respect to temperature rise. The effect of temperature rise on the stator resistance, ��-axis inductance, ��-axis inductance, and magnetic flux linkage is analysed. The hub motor parameters are identified offline. The proposed ITLBO algorithm is introduced to estimate the parameters online. The Gaussian perturbation function is employed to optimize the TLBO algorithm and improve the identification speed and accuracy. The mechanisms of group learning and low-ranking elimination are established. After that, the proposed ITLBO algorithm for parameter identification is employed to identify the hub motor parameters online on the test bench. Compared with other parameter identification algorithms, both simulation and experimental results show the proposed ITLBO algorithm has rapid convergence and a higher convergence precision, by which the robustness of the algorithm is effectively verified. Keywords: parameters identification, teaching–learning-based optimization, hub motor, temperature rise.
Go to article

Authors and Affiliations

Yong Li
1
Juan Wang
2
Taohua Zhang
2
Han Hu
1
Hao Wu
1

  1. Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China
  2. Beijing Institute of Space Launch Technology, Beijing 100076, China
Download PDF Download RIS Download Bibtex

Abstract

The technology for gob-side entry retaining in steep coal seams is still in the development stage. The

analysis results of the caving structure of main roof, low influence of gateway’s stability because of long

filling distance and weak dynamic effect of the gateway, and the low stress redistribution environment

indicate that using this technology in steep coal seams has significant advantages. Moreover, to reinforce

the waste rock and the soft floor and to better guard against the impact of the waste rock during natural

filling, a rock blocking device and grouting reinforcement method were invented, and theoretical calculations

result show that the blocking device has high safety factor. In addition, we also developed a set of

hydraulic support devices for use in the strengthening support zone. Furthermore, because the retaining

gateway was a systematic project, the selection of the size and shape of the gateway cross section and its

support method during the initial driving stage is a key step. Thus, first, a section the size of bottom width

and roof height of a new gateway was determined to meet any related requirements. Then, according

to the cross sections of 75 statistical gateways and the support technique, it chosen a trapezoidal cross

section when the dip of the coal seam is 35° < α ≤ 45°, a special and an inclined arch cross section when

45° < α ≤ 55°. Eventually, a support system of bolts and cables combined with steel mesh and steel belts

was provided. The support system used optimized material and improved parameters, can enhanced the

self-bearing ability of the surrounding coal and rock masses.

Go to article

Authors and Affiliations

Hongyun Yang
Shugang Cao
Guisong Zhou
Yuan Zhao
Guodong Li
Yong Li
Yingchong Fan

This page uses 'cookies'. Learn more