Search results

Filters

  • Journals
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In order to expand the application range of casting aluminum alloy ZL105, the stirring fusion casting method was used to add carbon nanotubes (CNTs) with different content and aspect ratio into the ZL105 aluminum matrix. And then the effect of the reinforcement on the mechanical properties of the alloy was compared and analyzed. The research results show that the tensile strength and hardness of the carbon nanotube composites with different contents will be improved, but to a certain extent the elongation of the composite material will be reduced, and there is an optimal addition amount. The mechanical properties of composite materials prepared by adding CNTs with relatively small length and diameter are better. There are different forms of reinforcement mechanisms for CNTs to reinforce cast aluminum alloys, and the improvement of composite material performance is the result of the combined effect of multiple strengthening methods. The research has made a meaningful exploration for the realization of carbon nanotube reinforced aluminum matrix composites under the casting method.
Go to article

Authors and Affiliations

Zhilin Pan
1
ORCID: ORCID
Rong Li
1
ORCID: ORCID
Qi Zeng
2
ORCID: ORCID

  1. Guizhou Normal University, School of Mechanical & Electrical Engineering, Contribution China
  2. Manager Section, Guiyang Huaheng Mechanical Manufacture CO. LTD China
Download PDF Download RIS Download Bibtex

Abstract

To prepare a high-quality asymmetrical bending pipe of aluminum alloy by casting, the parting surfaces of the asymmetrical parts were determined based on the characteristics of the parts. Also, the forming process was designed and calculated. After that, the different types of gating systems were designed and the casting process was calculated by ProCAST, and then the influence of different casting gating systems on asymmetrical bending pipes was analyzed. The simulation results show that in the solidification process, although the filling speed of the single runner was slow, but the filling was stable. The gating system with a single runner-round flange filling system would lead to being more uniform for filling flow field and be sequential solidification of temperature field distribution, and stronger of the feeding ability. During the solidification process, the solid phase ratio of the single runner-round flange casting system is larger, and the shrinkage volume is smaller, which made the quality of castings better. Finally, a metal mold and core were made to cast a perfect asymmetric bending pipe of aluminum alloy product in a die casting machine. So the single runner-round flange filling system is suitable for asymmetrical bending pipe casting.
Go to article

Authors and Affiliations

Ning Wang
1
ORCID: ORCID
Rong Li
1
ORCID: ORCID
ZiQi Zhang
1
Qi. Zeng
2
ORCID: ORCID

  1. School of Mechanical & Electrical Engineering, Guizhou Normal University
  2. Guiyang Huaheng Mechanical Manufacture CO., LTD, China
Download PDF Download RIS Download Bibtex

Abstract

In order to identify the influence of different Mn, Cd, V and Zr content on the properties of Al-Cu casting alloys in hydraulic valves, orthogonal test methods were used to prepare alloy test bars with different elements and contents. Tensile tests were performed on the test bars so obtained. The microstructure of alloys with different compositions is studied. The results show that adding approximately 0.4% of Mn can not only form a strengthening phase but also reduce the excessive segregation of the matrix along the grain boundary. A Cd content of 0.2% can promote the formation of micro Cd spheres in the softer aluminum matrix. Hard spots increase the wear resistance of the material; however, an excess of Cd will cause element segregation and deteriorate the mechanical properties of the valve body. Zr and V refine the grains in the alloy; however, an excess of these elements will lead to a large area of segregation. If proper heat treatment is lacking, the mechanical properties of the valve body deteriorate.

Go to article

Authors and Affiliations

Rong Li
ORCID: ORCID
Lunjun Chen
Qi. Zeng
ORCID: ORCID
Ming Su
Zhiping Xie
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Carbon nanotubes (CNTs) are a good reinforcement for metal matrix composite materials; they can significantly improve the mechanical, wear-resistant, and heat-resistant properties of the materials. Due to the differences in the atomic structure and surface energy between CNTs and aluminum-based materials, the bonding interface effect that occurs when nanoscale CNTs are added to the aluminum alloy system as a reinforcement becomes more pronounced, and the bonding interface is important for the material mechanical performance. Firstly, a comparative analysis of the interface connection methods of four CNT-reinforced aluminum matrix composites is provided, and the combination mechanisms of various interface connection methods are explained. Secondly, the influence of several factors, including the preparation method and process as well as the state of the material, on the material bonding interface during the composite preparation process is analyzed. Furthermore, it is explained how the state of the bonding interface can be optimized by adopting appropriate technical and technological means. Through the study of the interface of CNT-reinforced aluminum-based composite materials, the influence of the interface on the overall performance of the composite material is determined, which provides directions and ideas for the preparation of future high-performance CNT-reinforced aluminum-based composite materials.
Go to article

Bibliography

[1] Shao, H.Q. & Li, Q. J. (2020). Effect of stirring casting process parameters on properties of aluminum matrix composites for mechanical shield. Hot Working Technology. 23, 67-69+75.
[2] Krishna, A.R., Arun, A., Unnikrishnan, D. & Shankar. K.V. (2018). An investigation on the mechanical and tribological properties of alloy A356 on the addition of WC. Materials Today: Proceedings. 5(5), 12349-12355. DOI: 10.1016/j.matpr.2018.02.213.
[3] Joseph, J., Pillai, B.S., Jayanandan, J., Jayagopan, J., Nivedh, S., Balaji, U.S.S. & Shankar, K.V. (2021). Mechanical behaviour of age hardened A356/TiC metal matrix composite. Materials Today: Proceedings. 38, 2127-2132. DOI: 10.1016/j.matpr.2020.05.013.
[4] Kumar, V.A., Kumar, V.V.V., Menon, G.S., Bimaldev, S., Sankar, M., Shankar, K.V. & Balachandran, M. (2020). Analyzing the effect of B4C/Al2O3 on the wear behavior of Al-6.6Si-0.4Mg alloy using response surface methodology. International Journal of Surface Engineering and Interdisciplinary Materials Science. 8(2). 66-79. DOI: 10.4018/ijseims.2020070105.
[5] Anilkumar, V., Shankar, K.V., Balachandran, M., Joseph, J., Nived, S., Jayanandan, J., Jayagopan, J. & Surya Balaji, U.S. (2021). Impact of heat treatment analysis on the wear behaviour of Al-14.2Si-0.3Mg-TiC composite using response surface methodology. Tribology in industry. 43(3), 590-602. DOI: 10.24874/ti.988.10.20.04.
[6] Zhao, S., Liu, Z., &.Zhang, X. B. (2006). Technical process and mechanical properties of carbon nanotubes reinforced aluminium matrix composites. Foundry Technology. 2, 135-138.
[7] Nam, D.H., Cha, S.I., Lim, B.K,, Park, H.M., Han, D.S. & Hong, S.H. (2012). Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al–Cu composites. Carbon. 50(7), 2417-2423. DOI: 10.1016/j.carbon. 2012.01.058.
[8] Sun, Y.G., Liu, P., Chen, X.H., Liu, X.K., Li, W., Ma, F.C. & He, D,H. (2012). Present situation of carbon nano-tube reinforced aluminum composite. Material & Heat Treatment. 41(24), 137-139+144.
[9] Bakshi, S.R. & Agarwal, A. (2011). An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon. 49(2), 533-544. DOI: 10.1016/j.carbon.2010.09.054.
[10] Nai, M.H., Wei, J. & Gupta, M. (2014). Interface tailoring to enhance mechanical properties of carbon nanotube reinforced magnesium composites. Materials & Design. 60, 490-495. DOI: 10.1016/j.matdes.2014.04.011.
[11] Fan, T.X., Liu, Y., Yang, K.M., Song, J. & Zhang, D. (2019). Research progress on the optimization of the interface structure of carbon/metal composites and the interface mechanism. Acta Metall Sinica. 55(1), 16-32.
[12] Cao, L., Chen, B., Guo, B.S. & Li, J.S. (2021). A review of carbon nanotube dispersion methods in carbon nanotube reinforced aluminium matrix composites manufacturing process. Journal of Netshape Forming Engineering. 13(3), 9-24. DOI: 10.3969/j.issn.1674-6457.2021.03.002.
[13] Chen, B., Li, S., Imai, H., Jia, L., Umeda, J., Takahashi, M. & Kondoh, K. (2015). Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests. Composites Science and Technology. 113, 1-8. DOI: 10.1016/j.compscitech.2015.03.009.
[14] Pérez-Bustamante, R., Pérez-Bustamante, F., Estrada-Guel, I., Licea-Jiménez, L., Miki-Yoshida, M. & Martínez-Sánchez, R. (2013). Effect of milling time and CNT concentration on hardness of CNT/Al2024 composites produced by mechanical alloying. Materials Characterization. 75, 13-19. DOI: 10.1016/j.matchar.2012.09.005.
[15] Shi, G. (2012). The study of coated carbon nanotube and reinforced magnesium matrix composites. Lanzhou University of Technolofy, Lanzhou, China.
[16] Aravind Senan, V.R., Anandakrishnan, G., Rahul, S.R., Reghunath, N. & Shankar, K.V. (2020). An investigation on the impact of SiC/B4C on the mechanical properties of Al-6.6Si-0.4Mg alloy. Materials Today: Proceedings. 26, 649-653. DOI: 10.1016/j.matpr.2019.12.359.
[17] Rohith, K.P., Sajay Rajan, E., Harilal, H., Jose, K. & Shankar, K.V. (2018).Study and comparison of A356-WC composite and A356 alloy for an off-road vehicle chassis. Materials Today: Proceedings. 5(11), 25649-25656. DOI: 10.1016/j.matpr.2018.11.006.
[18] Jiang, L., Wen, H., Yang, H., Hu, T., Topping, T., Zhang, D., Lavernia, E.J. & Schoenung, J.M. (2015). Influence of length-scales on spatial distribution and interfacial characteristics of B4C in a nanostructured Al matrix. Acta Materialia. 89, 327-343. DOI: 10.1016/j.actamat.2015.01.062.
[19] Aravind Senan, V.R., Akshay, M.C., & Shankar, K.V. (2019). Determination on the effect of Al2O3 / B4B on the mechanical behaviour of al-6.6si-0.5mg alloy cast in permanent mould. Materials Science Forum. 969, 398-403. DOI: 10.4028/www.scientific.net/MSF.969.398.
[20] Truong. H.T.X., Lagoudas, D,C., Ochoa, O.O. & Lafdi, K. (2013). Fracture toughness of fiber metal laminates: Carbon nanotube modified Ti–polymer–matrix composite interface. Journal of Composite Materials. 48(22), 2697-2710. DOI: 10.1177/0021998313501923.
[21] Trinh, P,V., Luan, N.V., Phuong, D.D., Minh. P. N., Weibel, A., Mesguich, D. & Laurent, C. (2018) Microstructure, microhardness and thermal expansion of CNT/Al composites prepared by flake powder metallurgy. Composites Part A: Applied Science and Manufacturing. 105, 126-137. DOI: 10.1016/j.compositesa.2017.11.022.
[22] Laha, T., Chen, Y., Lahiri, D. & Agarwal, A. (2009). Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Composites Part A: Applied Science and Manufacturing. 40(5), 589-594. DOI: 10.1016/j.compositesa.2009.02.007.
[23] Bakshi, S.R., Singh, V., Seal, S. & Agarwal, A. (2009). Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders. Surface and Coatings Technology. 203(10-11), 1544-1554. DOI: 10.1016/j.surfcoat.2008.12.004.
[24] Liu, Z.Y., Xiao, B.L., Wang, W.G. & Ma, Z.Y. (2013). Developing high-performance aluminum matrix composites with directionally aligned carbon nanotubes by combining friction stir processing and subsequent rolling. Carbon. 62, 35-42. DOI: 10.1016/j.carbon.2013.05.049.
[25] Yang, X., Liu, E., Shi, C., He, C., Li, J., Zhao, N. & Kondoh, K. (2013). Fabrication of carbon nanotube reinforced Al composites with well-balanced strength and ductility. Journal of Alloys and Compounds. 563, 216-220. DOI: 10.1016/j.jallcom.2013.02.066.
[26] Gao, M., Gao, P., Wang, Y., Lei, T. & Ouyang. C. (2020). Study on metallurgically prepared copper-coated carbon fibers reinforced aluminum matrix composites. Metals and Materials International. 12. DOI: 10.1007/s12540-020-00897-1.
[27] Li, S., Su, Y., Zhu, X., Jin, H., Ouyang, Q. & Zhang, D. (2016). Enhanced mechanical behavior and fabrication of silicon carbide particles covered by in-situ carbon nanotube reinforced 6061 aluminum matrix composites. Materials & Design. 107, 130-138. DOI: 10.1016/j.matdes.2016.06.021.
[28] Mansoor, M., Khan, S., Ali, A. & Ghauri, K.M. (2019). Fabrication of aluminum-carbon nanotube nano-composite using aluminum-coated carbon nanotube precursor. Journal of Composite Materials. 53(28-30), 4055-4064. DOI: 10.1177/0021998319853341.
[29] Kucukyildirim, B.O. & Eker, A.A. (2012). Fabrication and mechanical properties of CNT/6063Al composites prepared by vacuum assisted infiltration technique using CNT-Al preforms. Advanced Composites Letters. 133(1), 125-130.
[30] Kang, K., Bae, G., Kim, B. & Lee, C. (2012). Thermally activated reactions of multi-walled carbon nanotubes reinforced aluminum matrix composite during the thermal spray consolidation. Materials Chemistry and Physics. 133(1), 495-499. DOI: 10.1016/j.matchemphys.2012.01.071.
[31] Isaza, M.C.A., Ledezma Sillas, J.E., Meza, J.M. & Herrera Ramírez, J.M. (2016). Mechanical properties and interfacial phenomena in aluminum reinforced with carbon nanotubes manufactured by the sandwich technique. Journal of Composite Materials. 51(11), 1619-1629. DOI: 10.1177/0021998316658784.
[32] Kurita, H., Estili, M., Kwon, H., Miyazaki, T., Zhou, W., Silvain, J-F. & Kawasaki, A. (2015). Load-bearing contribution of multi-walled carbon nanotubes on tensile response of aluminum. Composites Part A: Applied Science and Manufacturing. 68, 133-139. DOI: 10.1016/j.compositesa.2014.09.014.
[33] Shin, S.E. & Bae, D.H. (2013). Strengthening behavior of chopped multi-walled carbon nanotube reinforced aluminum matrix composites. Materials Characterization. 83, 170-177. DOI: 10.1016/j.matchar.2013.05.018.
[34] Zhou, W., Bang, S., Kurita, H., Miyazaki, T., Fan, Y. & Kawasaki, A. (2016). Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites. Carbon. 96, 919-928. DOI: 10.1016/j.carbon.2015.10.016.
[35] Liu, Z.Y., Xiao, B.L., Wang, W.G. & Ma, Z.Y. (2012). Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon. 50(5), 1843-1852. DOI: 10.1016/j.carbon.2011.12.034.
[36] Li, Z.W., Lin, R.B., Hu, L., Yu, Z.Y., Yan, L.P., Tan, Z.Q., Fan, G.L., Li, Z.Q. & Zhang, D. (2017). CNTs/Al interfacial reaction degree and the relationship with mechanical performance of composite. Materials For Mechanical Engineering. 41(11), 19-22+28. DOI: 10.11973/jxgcc1201711003.
[37] Zhang, X.X., Wei, H.M., Li, A.B., Fu, Y.D. & Geng, L. (2013). Effect of hot extrusion and heat treatment on CNTs–Al interfacial bond strength in hybrid aluminium composites. Composite Interfaces. 20(4), 231-239. DOI: 10.1080/15685543.2013.793093.
[38] Wu, G. H., Jiang, L.T., Chen, G.Q. & Zhang, Q. (2012). Research progress on the control of interfacial reactions in metal matrix composites. Materials China. 31(7), 51-58. DOI: CNKI:SUN:XJKB.0.2012-07-009.
[39] Chen, B., Shen, J., Ye, X., Imai, H., Umeda, J., Takahashi, M. & Kondoh, K. (2017). Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites. Carbon. 114, 198-208. DOI: 10.1016/j.carbon.2016.12.013.
[40] Ci, L., Ryu, Z., Jin-Phillipp, N.Y. & Rühle, M. (2006). Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum. Acta Materialia. 54(20), 5367-5375. DOI: 10.1016/j.actamat.2006.06.031.
[41] Jiang, L., Li, Z., Fan, G., Cao, L. & Zhang, D. (2012). Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes. Scripta Materialia. 66(6), 331-334. DOI: 10.1016/j.scriptamat.2011.11.023.
[42] Xu, S.J., Xiao, B.L., Liu, Z.Y., Wang, W.G. & Ma, Z.Y. (2012). Micorstrures and mechanical properties of CNT/Al conposites fabricated by high energy ball-milling method. Acta Metallurgica Sinica. 48(7), 882-888. DOI: 10.3724/SP.J.1037.2012.00140.
[43] Raviathul Basariya, M., Srivastava, V.C. & Mukhopadhyay, N.K. (2014). Microstructural characteristics and mechanical properties of carbon nanotube reinforced aluminum alloy composites produced by ball milling. Materials & Design. 64, 542-549. DOI: 10.1016/j.matdes.2014.08.019.
[44] Yoo, S.J., Han, S.H. & Kim, W.J. (2013). Strength and strain hardening of aluminum matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes. Scripta Materialia. 68(9), 711-714. DOI: 10.1016/j.scriptamat.2013.01.013.
[45] Le, G., Cai, X.L., Wang, K.J., Wang, X.F., Sun, H.P. & Chen, Y,G. (2013). Experimental study on interfacial reaction of CNTs/Al matrix composites. Mining And Metallurgical Engineering. 33(1), 109-112. DOI: 10.3969/j.issn.0253-6099.2013.01.027.
[46] Majid, M., Majzoobi, G.H., Noozad, G.A., Reihani, A., Mortazavi, S.Z. & Gorji, M.S. (2012). Fabrication and mechanical properties of MWCNTs-reinforced aluminum composites by hot extrusion. Rare Metals. 31(4), 372-378. DOI: 10.1007/s12598-012-0523-6.
[47] Zhu, X., Zhao, Y.G., Wu, M., Wang, H.Y. & Jiang, Q.C. (2016), Effect of initial aluminum alloy particle size on the damage of carbon nanotubes during ball milling. Materials (Basel). 9(3), 173. DOI: 10.3390/ma9030173.
[48] Ji, W., Wang, W.J., Meng, F.D., Huang, J.J., Wu, Z.Q., He, W. & Wu, H. (2021), Study on interfacial bonding of aluminum matrix composites reinforced by carbon nanotubes with potassium fluoroaluminate. Hot Working Technology. 50(6), 71-74. DOI: 10.14158/j.cnki.1001-3814.20193526.
[49] Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M. & Lanka, S. (2010). Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Composites Science and Technology. 70(16), 2237-2241. DOI: 10.1016/j.compscitech.2010.05.004.
[50] Peng, T. & Chang, I. (2014). Mechanical alloying of multi-walled carbon nanotubes reinforced aluminum composite powder. Powder Technology. 266, 7-15. DOI: 10.1016/j.powtec.2014.05.068.
[51] Kwon, H., Saarna, M., Yoon, S., Weidenkaff, A. & Leparoux, M. (2014). Effect of milling time on dual-nanoparticulate-reinforced aluminum alloy matrix composite materials. Materials Science and Engineering: A. 590, 338-345. DOI: 10.1016/j.msea.2013.10.046.
[52] Tang, J.J, Li, C.J. & Zhu, X.K. (2012). Progress of the current interface research on carbon nanotubes reinforced Aluminum-matrix composites. Materials Review. 26(11), 149-152. DOI: CNKI:SUN:CLDB.0.2012-11-033.
[53] Li, J.R., Jiang, X.S., Liu, W.X., Li, X. & Zhu, D.G. (2015). Research progress of the interface characteristic and strengthening mechanism in carbon nanotube reinforced Aluminum matrix composites. Materials Review. 29(1), 31-35+42. DOI: 10.11896/j.issn.1005-023X.2015.01.005.
[54] So, K.P., Lee, I.H., Duong, D.L., Kim, T.H., Lim, S.C., An, K.H. & Lee, Y.H. (2011). Improving the wettability of aluminum on carbon nanotubes. Acta Materialia. 59(9), 3313-3320. DOI: 10.1016/j.actamat.2011.01.061.
[55] Zeng, M.Q. & Ou Yang, L. Z. (2002). Progress in research on interface of composite material. China Foundy Machinery & Technoligy. 6, 23-26. DOI: CNKI:SUN:ZZSB.0.2002-06-008.
[56] Jiang, L., Fan, G., Li, Z., Kai, X., Zhang, D., Chen, Z., Humphries, S., Heness, G. & Yeung, W.Y. (2011). An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder. Carbon. 49(6), 1965-1971. DOI: 10.1016/j.carbon.2011.01.021.
[57] Huang, Y., Ouyang, Q., Zhang, D., Zhu, J., Li, R. & Yu, H. (2014). Carbon materials reinforced aluminum composites: a review. Acta Metallurgica Sinica (English Letters). 27(5), 775-786. DOI: 10.1007/s40195-014-0160-1.
[58] So, K.P., Biswas, C., Lim, S.C., An, K.H. & Lee, Y.H. (2011). Electroplating formation of Al–C covalent bonds on multiwalled carbon nanotubes. Synthetic Metals. 161(3-4), 208-212. DOI: 10.1016/j.synthmet.2010.10.023.
[59] Arai, S., Suzuki, Y., Nakagawa, J., Yamamoto, T. & Endo, M. (2012). Fabrication of metal coated carbon nanotubes by electroless deposition for improved wettability with molten aluminum. Surface and Coatings Technology. 212, 207-213. DOI: 10.1016/j.surfcoat.2012.09.051.
[60] Jagannatham, M., Sankaran, S. & Haridoss, P. (2015). Microstructure and mechanical behavior of copper coated multiwall carbon nanotubes reinforced aluminum composites. Materials Science and Engineering: A. 638, 197-207. DOI: 10.1016/j.msea.2015.04.070.
[61] So, K.P., Jeong, J.C., Park, J.G., Park, H.K., Choi, Y.H., Noh, D.H., Keum, D.H., Jeong, H.Y., Biswas, C., Hong, C.H. & Lee, Y,H. (2013). SiC formation on carbon nanotube surface for improving wettability with aluminum. Composites Science and Technology. 74, 6-13. DOI: 10.1016/j.compscitech.2012.09.014.
[62] Wang, H. & Zhu, Y.L. (2019). Pretreatment and copper plating of carbon nanotubes by electroless deposition. Surface Technology. 48(11), 211-218. DOI: 10.16490/j.cnki.issn.1001-3660.2019.11.022.
[63] Lahiri, D., Bakshi, S.R., Keshri, A.K., Liu, Y. & Agarwal. A. (2009). Dual strengthening mechanisms induced by carbon nanotubes in roll bonded aluminum composites. Materials Science and Engineering: A. 523(1-2), 263-270. DOI: 10.1016/j.msea.2009.06.006.
[64] Liu, B., Deng, F.M. & Qu, J.X. (2003). Design and research of carbon nanotubes reinforced aluminum matrix composite. Ordnance Material Science and Engineering. 6, 54-57+69. DOI: 10.14024/j.cnki.1004-244x.2003.06.016.
[65] Zheng, Q.W. & Fan, T.X. (2022). Experimental and simulation methods on liquid/solid interface wettability considering crystal surfaces. Materials Reports. 9, 1-23.
[66] Han, X.D., Li, Z.Q., Fan, G.L., Jiang, L. & Zhang, D. (2012). Progress in fabrication technique of carbon nanotubes reinforced Al matrix composites. Materials Reports. 26(21), 40-46.DOI: CNKI:SUN:CLDB.0.2012-21-010.
[67] Oh, S-I., Lim, J-Y., Kim, Y-C., Yoon, J., Kim, G-H., Lee, J., Sung, Y-M. & Han, J-H. (2012). Fabrication of carbon nanofiber reinforced aluminum alloy nanocomposites by a liquid process. Journal of Alloys and Compounds. 542, 111-117. DOI: 10.1016/j.jallcom.2012.07.029.
[68] Bi, S., Xiao, B.L., Ji, Z.H., Liu, B.S., Liu, Z.Y. & Ma, Z.Y. (2020). Dispersion and damage of carbon nanotubes in carbon nanotube/7055Al composites during high-energy ball milling process. Acta Metallurgica Sinica (English Letters). 34(2), 196-204. DOI: 10.1007/s40195-020-01138-5.
[69] Guo, B., Zhang, X., Cen, X., Wang, X., Song, M., Ni, S., Yi, J., Shen, T. & Du, Y. (2018). Ameliorated mechanical and thermal properties of SiC reinforced Al matrix composites through hybridizing carbon nanotubes. Materials Characterization. 136, 272-280. DOI: 10.1016/j.matchar.2017.12.032.
[70] Aristizabal, K., Katzensteiner, A., Bachmaier, A., Mücklich, F. & Suarez, S. (2017). Study of the structural defects on carbon nanotubes in metal matrix composites processed by severe plastic deformation. Carbon. 125, 156-161. DOI: 10.1016/j.carbon.2017.09.075.
[71] Li, H., Kang, J., He, C., Zhao, N., Liang, C. & Li, B. (2013). Mechanical properties and interfacial analysis of aluminum matrix composites reinforced by carbon nanotubes with diverse structures. Materials Science and Engineering: A. 577, 120-124. DOI: 10.1016/j.msea.2013.04.035.
[72] Serp, P. & Castillejos, E. (2010). Catalysis in carbon nanotubes. ChemCatChem. 2(1), 41-47. DOI: 10.1002/cctc.200900283.
[73] Liyong, T., Xiannian, S. & Ping, T. (2008). Effect of long multi-walled carbon nanotubes on delamination toughness of laminated composites. Journal of Composite Materials. 42(1), 5-23. DOI: 10.1177/0021998307086186.
[74] Wang, L., Choi, H., Myoung, J-M. & Lee, W. (2009). Mechanical alloying of multi-walled carbon nanotubes and aluminium powders for the preparation of carbon/metal composites. Carbon. 47(15), 3427-3433. DOI: 10.1016/j.carbon.2009.08.007.
[75] Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M. & Lanka, S. (2011). The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites. Composites Part A: Applied Science and Manufacturing. 42(3), 234-243. DOI: 10.1016/j.compositesa.2010.11.008.
[76] Hassan, M.T.Z., Esawi, A.M.K. & Metwalli, S. (2014). Effect of carbon nanotube damage on the mechanical properties of aluminium–carbon nanotube composites. Journal of Alloys and Compounds. 607, 215-222. DOI: 10.1016/j.jallcom.2014.03.174.
[77] Jiang, J.L., Zhao, S.J., Yang, H. & Li, W. X. (2008). Mechanical properties of Al matrix composites reinforced with carbon nanotubes prepared by powdermetallurgy. Transactions Of Materials And Heat Treatment. 3, 6-9. DOI: 10.13289/j.issn.1009-6264.2008.03.002.
[78] Liao, J-Z., Tan, M-J. & Sridhar, I. (2010). Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites. Materials & Design. 31, S96-S100. DOI: 10.1016/j.matdes.2009.10.022.
[79] Chen, B., Imai, H., Umeda, J., Takahashi, M. & Kondoh, K. (2017). Effect of spark-plasma-sintering conditions on tensile properties of aluminum matrix composites reinforced with multiwalled carbon nanotubes (MWCNTs). Jom. 69(4), 669-675. DOI: 10.1007/s11837-017-2263-4.
[80] Choi, H.J., Shin, J.H. & Bae, D. H. (2011). Grain size effect on the strengthening behavior of aluminum-based composites containing multi-walled carbon nanotubes. Composites Science and Technology. 71(15), 1699-1705. DOI: 10.1016/j.compscitech.2011.07.013.
[81] Etter, T., Schulz, P., Weber, M., Metz, J., Wimmler, M., Löffler, J.F. & Uggowitzer, P.J. (2007). Aluminium carbide formation in interpenetrating graphite/aluminium composites. Materials Science and Engineering: A. 448(1-2), 1-6. DOI: 10.1016/j.msea.2006.11.088.
[82] Huang, Y.P., Li, D.H. & Huang, W. (2004), Preparation and property of pure AMC reinforced by CNTs. New technology and new process. 12, 48-49. DOI: CNKI:SUN:XJXG.0.2004-12-021.
[83] Aborkin, A., Khorkov, K., Prusov, E., Ob'edkov, A., Kremlev, K., Perezhogin, I. & Alymov, M. (2019). Effect of increasing the strength of aluminum matrix nanocomposites reinforced with microadditions of multiwalled carbon nanotubes coated with TiC nanoparticles. Nanomaterials (Basel). 9(11), 1596. DOI: 10.3390/nano9111596.
[84] Zhou, W., Sasaki, S. & Kawasaki, A. (2014). Effective control of nanodefects in multiwalled carbon nanotubes by acid treatment. Carbon. 78, 121-129. DOI: 10.1016/j.carbon.2014.06.055.
[85] Wang, L., Ge, L., Rufford, T.E., Chen, J., Zhou, W., Zhu, Z. & Rudolph, V. (2011). A comparison study of catalytic oxidation and acid oxidation to prepare carbon nanotubes for filling with Ru nanoparticles. Carbon. 49(6), 2022-2032. DOI: 10.1016/j.carbon.2011.01.028.
[86] Kim, K.T., Cha, S.I., Gemming, T., Eckert, J. & Hong, S.H. (2008). The role of interfacial oxygen atoms in the enhanced mechanical properties of carbon-nanotube-reinforced metal matrix nanocomposites. Small. 4(11), 1936-1940. DOI: 10.1002/smll.200701223.
[87] Liao, J. & Tan, M-J. (2011). Mixing of carbon nanotubes (CNTs) and aluminum powder for powder metallurgy use. Powder Technology. 208(1), 42-48. DOI: 10.1016/j.powtec.2010.12.001.
[88] Fan, B.B., Wang, B.B., Chen, H., Wang, G.J. & Zhang, Y. (2013). Preparation and properties of carbon CNTs/Al matrix composites. Journal Of Shenyang University (Natural Science). 25(2), 128-131. DOI: CNKI:SUN:SYDA.0.2013-02-011.
Go to article

Authors and Affiliations

Rong Li
1
ORCID: ORCID
Zhilin Pan
1
ORCID: ORCID
Qi. Zeng
ORCID: ORCID
Xiaoli Ye
1

  1. School of Mechanical & Electrical Engineering Guizhou Normal University, Guyiang, Guizhou, China
Download PDF Download RIS Download Bibtex

Abstract

To improve the mechanical properties of casting aluminum-copper alloy, the mixed rare earth (RE) was added to ZL206 and its properties and the enhanced mechanism of alloy were researched. The results showed that the strength and hardness of the composite were improved by 10.2% and 6.2%, respectively. After adding mixed RE, which was led by the heterogeneous enrichment area blocking the growth of the α-Al phase and making grain refinement during the solidification process. The simulation results of RE surface adsorption models by first principles also showed that the elastic constant calculation improved the bulk modulus, shear modulus, and Young's modulus of the material. The addition of mixed RE enhances the strength and hardness, although it adversely affects toughness and reduces the machining index. Also, the work function decreased, and the Fermi level increased, reflecting that the electron locality on each band was strong and the bonding state of the alloy system was covalent, which showed that the corrosion resistance was enhanced after adding mixed RE. It provides a new method for the mechanism of RE-modified aluminum-copper alloys and expands the direction of cast aluminum-copper alloy modification.
Go to article

Bibliography

[1] Gan, L., Wen-ying, Q., Min, L., Le, C., Chuan, G., Xing-gang, L., Zhen, X., Xiao-gang, H., Da-quan, L., Hong-xing, L. & Qiang, Z. (2021). Semi-solid processing of aluminum and magnesium alloys: Status, opportunity, and challenge in China. Transactions of Nonferrous Metals Society of China. 31(11), 3255-3280. https://doi.org/10.1016/S1003-6326(21)65729-1.

[2] Wang, J. & Li, F. (2023). Research Status and prospective properties of the Al-Zn-Mg-Cu series aluminum alloys. Metals. 13(8), 1329, 1-24. https://doi.org/10.3390/met13081329.

[3] Medvedev, A.E., Murashkin, M.Y., Enikeev, N.A., Valiev, R.Z., Hodgson, P.D. & Lapovok, R. (2018). Enhancement of mechanical and electrical properties of Al-RE alloys by optimizing rare-earth concentration and thermo-mechanical treatment. Journal of Alloys and Compounds. 745, 696-704. https://doi.org/10.1016/j.jallcom.2018.02.247.

[4] Demétrio, K. B., Nogueira, A. P. G., Menapace, C., Bendo, T., & Molinari, A. (2021). Effect of nanostructure on phase transformations during heat treatment of 2024 aluminum alloy. Journal of Materials Research and Technology. 14, 1800-1808. https://doi.org/10.1016/j.jmrt.2021.07.044.

[5] Hong, J., Linfan, Z., Biwei, Z., Ming, S. & Meifeng, H. (2022). Microstructure and mechanical properties of ZL205A aluminum alloy produced by squeeze casting after heat treatment. Metals. 12(12), 2037, 1-12. https://doi.org/10.3390/met12122037.

[6] Krishna, N.N., Sivaprasad, K. & Susila, P. (2014). Strengthening contributions in ultra-high strength cryorolled Al-4% Cu-3% TiB2 in situ composite. Transactions of Nonferrous Metals Society of China. 24(3), 641-647. https://doi.org/10.1016/S1003-6326(14)63106-X.

[7] Liu, F., Su, H., Liang, Y. & Xu, J. (2023). Fatigue performance on 7050 aluminum alloy by using ultrasonic vibration-assisted hole expansion strengthening. The International Journal of Advanced Manufacturing Technology. 128, 5153-5165. https://doi.org/10.1007/s00170-023-12234-y.

[8] Harvey, (2013). Cerium-based conversion coatings on aluminium alloys: a process review. Corrosion Engineering, Science and Technology. 48(4), 248-269. https://doi.org/10.1179/1743278213Y.0000000089.

[9] Martínez-Campos, A. Y., Pérez-Bustamante, F., Pérez-Bustamante, R., Rosales-Sosa, G., del carmen Gallegos-Melgar, A., Martínez-Sánchez, R., Carreño-Gallardo, C. & Mendoza-Duarte, J. M. (2021). Hot extrusion of an aerospace-grade aluminum alloy modified with rare earths. Microscopy and Microanalysis. 27(S1), 3396-3397. https://doi.org/10.1017/S1431927621011673.

[10] Ding, W., Zhao, X., Chen, T., Zhang, H., Liu, X., Cheng, Y. & Lei, D. (2020). Effect of rare earth Y and Al–Ti–B master alloy on the microstructure and mechanical properties of 6063 aluminum alloy. Journal of Alloys and Compounds. 830, 154685, 1-11. (prepublish). https://doi.org/10.1016/ j.jallcom.2020.154685.

[11] Brachetti-Sibaja, S. B., Domínguez-Crespo, M. A., Torres-Huerta, A. M., Onofre-Bustamante, E., & La Cruz-Hernández, D. (2014). Rare earth conversion coatings grown on AA6061 aluminum alloys. Corrosion studies. Journal of the Mexican Chemical Society. 58(4), 248-269. https://doi.org/10.29356/jmcs.v58i4.48.

[12] Ouyang, Y., Zhang, B., Jin, Z. & Liao, S. (1996). The formation enthalpies of rare earth-aluminum alloys and intermetallic compounds. International Journal of Materials Research. 87(10), 802-805. https://doi.org/10.1515/ijmr-1996-871011.

[13] Xie, S.-K., Yi, R.X., Gao, Z., Xia, X., Hu, C.G. & Guo, X.Y. (2010). Effect of rare earth Ce on casting properties of Al-4.5 Cu alloy. Advanced Materials Research. 136, 1-4. https://doi.org/10.4028/www.scientific.net/AMR.136.1.

[14] Xie, S.-K., Ai, Y.P., Xia, X., Yi, R.X., Gao, Z. & Guo, X.Y. (2011). Effects of Ce addition on the mobility and hot tearing tendency of Al-4.5 Cu alloy. Advanced Materials Research. 146, 481-484. https://doi.org/10.4028/www.scientific.net/ AMR.146-147.481.

[15] Knipling, K.E., Dunand, D.C. & Seidman, D.N. (2022). Criteria for developing castable, creep-resistant aluminum-based alloys–A review. International Journal of Materials Research. 97(3), 246-265. https://doi.org/10.1515/ijmr-2006-0042.

[16] Belov, N.A., Naumova, E.A. & Eskin, D.G. (1999). Casting alloys of the Al–Ce–Ni system: microstructural approach to alloy design. Materials Science and Engineering: A. 271(1-2), 134-142. https://doi.org/10.1016/S0921-5093(99)00343-3.

[17] Hishiki, F., Akiyama, T., Kawamura, T., & Ito, T. (2022). Structures and stability of GaN/Ga2O3 interfaces: a first-principles study. Japanese Journal of Applied Physics. 61(6), 065501. https://doi.org/10.35848/1347-4065/ac5e90.

[18] Chen, S., Wang, Q., Liu, X., Tao, J., Wang, J., Wang, M. & Wang, H. (2020). First-principles studies of intrinsic stacking fault energies and elastic properties of Al-based alloys. Materials Today Communications. 24, 101085, 1-9. (prepublish). https://doi.org/10.1016/j.mtcomm.2020.101085.

[19] Yan, C.W., Bo, L.Y., Peng, Z. & Bo, G.C. (2018). First principle study of electronic structures and optical properties of Ce-doped SiO2. AIP Advances. 8(5), 055125. https://doi.org/10.1063/1.5024592.

[20] Yue, F., Jiaojiao, C., Chi, L., Tao, W., Hongchen, L. & Tao, S. (2021). A first-principle study on photoelectric characteristics of Ce-doped ZnO. Ferroelectrics. 573(1), 214-223. https://doi.org/10.1080/00150193.2021.1890478.

[21] Ali, M.L. & Rahaman, M.Z. (2018). Investigation of different physical aspects such as structural, mechanical, optical properties and Debye temperature of Fe2ScM (M=P and As) semiconductors: A DFT-based first principles study. International Journal of Modern Physics B. 32(10), 1850121. https://doi.org/10.1142/S0217979218501217.

[22] Wutthigrai, S., Ittipon, F., Sukit, L. & Kanoknan, P. (2022). A first principles investigation on the structural, elastic, and mechanical properties of MAX phase M3AlC2 (M= Ta, Ti, V) as a function of pressure. Computational Condensed Matter. 30, e00638, 1-9. (prepublish). https://doi.org/10.1016/j.cocom.2021.e00638.

[23] Zhang, J., Huang, Y., Mao, C. & Peng, P. (2012). Structural, elastic and electronic properties of θ (Al2Cu) and S (Al2CuMg) strengthening precipitates in Al–Cu–Mg series alloys: first-principles calculations. Solid State Communications. 152(23), 2100-2104. https://doi.org/10.1016/j.ssc.2012.09.003.

[24] Cornette, P., Costa, D. & Marcus, P. (2020). Relation between surface composition and electronic properties of native oxide films on an aluminium-copper alloy studied by DFT. Journal of the Electrochemical Society. 167(16), 161501. https://doi.org/10.1149/1945-7111/abc9a1.

[25] China Aviation Industry Group. HB 962-2001 Casting Aluminum alloys[S]. Beijing: China National Defense Science, Technology and Industry Commission.2001.11.15

[26] Wang, S. & Fan, C. (2019). Crystal structures of Al2Cu revisited: understanding existing phases and exploring other potential phases. Metals. 9(10), 1037, 1-10. https://doi.org/10.3390/met9101037.

[27] Mishnaevsky Jr, L. (2015). Nanostructured interfaces for enhancing mechanical properties of composites: Computational micromechanical studies. Composites Part B: Engineering. 68, 75-84. https://doi.org/10.1016/ j.compositesb.2014.08.029.

[28] Li, Y., Zhang, Z., Vogt, R., Schoenung, J. & Lavernia, E. (2011). Boundaries and interfaces in ultrafine grain composites. Acta materialia. 59(19), 7206-7218. https://doi.org/10.1016/j.actamat.2011.08.005.

[29] Liu, Y., Xu, M., Xiao, L., Chen, X., Hu, Z., Gao, B., Liang, N., Zhu, Y., Cao, Y. & Zhou, H. (2023). Dislocation array reflection enhances strain hardening of a dual-phase heterostructured high-entropy alloy. Materials Research Letters. 11(8) 638-647. https://doi.org/ 10.1080/21663831.2023.2208166.

[30] Maldonado, F. & Stashans, A. (2017). DFT study of Ag and La codoped BaTiO3. Journal of Physics and Chemistry of Solids. 102, 136-141. https://doi.org/10.1016/j.jpcs.2016.11.016.

[31] Loschen, C., Carrasco, J., Neyman, K.M. & Illas, F. (2007). First-principles LDA+ U and GGA+ U study of cerium oxides: Dependence on the effective U parameter. Physical Review B. 75(3), 035115. https://doi.org/10.1103/PhysRevB.75.035115.

[32] Yang, H., Wang, B., Zhang, H., Shen, B., Li, Y., Wang, M., Wang, J., Gao, W., Kang, Y. & Li, L. (2023). Evolving corundum nanoparticles at room temperature. Acta Materialia 255, 119038, 1-7. https://doi.org/10.1016/ j.actamat.2023.119038.

[33] Michaelson, H.B. (1977). The work function of the elements and its periodicity. Journal of applied physics. 48(11), 4729-4733. https://doi.org/10.1063/1.323539.

[34] Schlesinger, R., Xu, Y., Hofmann, O.T., Winkler, S., Frisch, J., Niederhausen, J., Vollmer, A., Blumstengel, S., Henneberger, F. & Rinke, P. (2013). Controlling the work function of ZnO and the energy-level alignment at the interface to organic semiconductors with a molecular electron acceptor. Physical Review B. 87(15), 155311. https://doi.org/10.1103/PhysRevB.87.155311.

[35] Liu, M., Jin, Y., Pan, J. & Leygraf, C. (2019). Co-Adsorption of H2O, OH, and Cl on aluminum and intermetallic surfaces and its effects on the work function studied by DFT calculations. Molecules. 24(23), 4284, 1-15. https://doi.org/10.3390/molecules24234284.

[36] Golesorkhtabar, R., Pavone, P., Spitaler, J., Puschnig, P. & Draxl, C. (2013). ElaStic: A tool for calculating second-order elastic constants from first principles. Computer Physics Communications. 184(8), 1861-1873. https://doi.org/10.1016/j.cpc.2013.03.010.

[37] de Jong, M., Chen, W., Angsten, T., Jain, A., Notestine, R., Gamst, A., Sluiter, M., Krishna Ande, C., van der Zwaag, S., Plata, J.J., Toher, C., Curtarolo, S., Ceder, G., Persson, K.A. & Asta, M. (2015). Charting the complete elastic properties of inorganic crystalline compounds. Scientific Data. 2(1), 150009, 1-13. https://doi.org/10.1038/sdata.2015.9.

[38] Pugh, S. (1954). XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 45(367), 823-843. https://doi.org/10.1080/14786440808520496.

[39] Shang, S., Wang, Y. & Liu, Z.-K. (2007). First-principles elastic constants of α-and θ-Al2O3. Applied Physics Letters. 90(10), 101909. https://doi.org/10.1063/1.2711762.

[40] Candan, A., Akbudak, S., Uğur, Ş. & Uğur, G. (2019). Theoretical research on structural, electronic, mechanical, lattice dynamical and thermodynamic properties of layered ternary nitrides Ti2AN (A= Si, Ge and Sn). Journal of Alloys and Compounds 771, 664-673. https://doi.org/10.1016/j.jallcom.2018.08.286.

[41] Sun, Z., Music, D., Ahuja, R. & Schneider, J.M. (2005). Theoretical investigation of the bonding and elastic properties of nanolayered ternary nitrides. Physical Review B. 71(19), 193402. https://doi.org/10.1103/PhysRevB.71.193402.

[42] Mattis, S., Sang-Hyeok, L., Tobias, S., W.J. M. & Sandra, K.-K. (2023). Estimation of directional single crystal elastic properties from nano-indentation by correlation with EBSD and first-principle calculations. Materials & Design. 234, 112296, 1-15. https://doi.org/10.1016/j.matdes.2023.112296.

[43] Fan, T., Ruan, Z., Zhong, F., Xie, C., Li, X., Chen, D., Tang, P. & Wu, Y. (2023). Nucleation and growth of L12-Al3RE particles in aluminum alloys:A first-principles study. Journal of Rare Earths. 41(7), 1116-1126. https://doi.org/10.1016/ j.jre.2022.05.018.

[44] Liao, H.-c., Xu, H.-t. & Hu, Y.-y. (2019). Effect of RE addition on solidification process and high-temperature strength of Al− 12% Si− 4% Cu− 1.6% Mn heat-resistant alloy. Transactions of Nonferrous Metals Society of China. 29(6), 1117-1126. https://doi.org/10.1016/S1003-6326(19)65020-X.

[45] Belov, N. & Khvan, A. (2007). The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner. Acta Materialia. 55(16), 5473-5482. https://doi.org/10.1016/j.actamat.2007.06.009.

[46] Chen, Z., Chen, P. & Ma, C. (2012). Microstructures and mechanical properties of Al-Cu-Mn alloy with La and Sm addition. Rare Metals. 31, 332-335. https://doi.org/10.1007/s12598-012-0515-6.

[47] Lang, J., Baer, Y. & Cox, P. (1981). Study of the 4f and valence band density of states in rare-earth metals. II. Experiment and results. Journal of Physics F: Metal Physics 11(1), 121. https://doi.org/10.1088/0305-4608/11/1/015.

[48] Farahani, S.V., Veal, T.D., Mudd, J.J., Scanlon, D.O., Watson, G., Bierwagen, O., White, M., Speck, J.S. & McConville, C.F. (2014). Valence-band density of states and surface electron accumulation in epitaxial SnO2 films. Physical Review B 90(15), 155413. https://doi.org/10.1103/PhysRevB.90.155413.

[49] Nogita, K., Yasuda, H., Yoshiya, M., McDonald, S., Uesugi, K., Takeuchi, A. & Suzuki, Y. (2010). The role of trace element segregation in the eutectic modification of hypoeutectic Al–Si alloys. Journal of Alloys and Compounds. 489(2) 415-420. https://doi.org/10.1016/j.jallcom. 2009.09.138.

[50] Jiajia, W., Kaixiao, Z., Guobing, Y., Jiangbo, C., Dan, S., Jinghua, J. & Aibin, M. (2023). Effects of RE (RE = Sc, Y and Nd) concentration on galvanic corrosion of Mg-Al alloy: a theoretical insight from work function and surface energy. Journal of Materials Research and Technology. 24, 6958-6967. https://doi.org/10.1016/J.JMRT.2023.04.208.



Go to article

Authors and Affiliations

Xin Li
1
ORCID: ORCID
Medetbek Uulu Nurtilek
1
Ziqi Zhang
1
Lixia Wang
1
Quan Wu
1
Peixuan Mao
1
Rong Li
1
ORCID: ORCID

  1. School of Mechanical & Electrical Engineering, Guizhou Normal University, China
Download PDF Download RIS Download Bibtex

Abstract

To further improve the mechanical properties of carbon nanotubes (CNTs) modified aluminum alloy (ZL105), the first principle was used to build the atomic structure of the alloy system and the alloy system was simulated by the VASP. After that, the heat treatment process of the cast aluminium alloy material with CNTs to enhance the alloy performance by the orthogonal experiment. The results of the research show that: (1) The energy status of the alloy system could be changed by adding the C atoms, but it did not affect the formation and structural stability of the alloy system, and the strong bond compounds formed by C atoms with other elements inside the solid solution structure can significantly affect the material properties. (2) The time of solid solution has the greatest influence on the performance of material that was modified by CNTs. The solution temperature and aging temperature were lower strength affection, and the aging time is the lowest affection. This paper provides a new research method of combining the atomic simulation with the casting experiment, which can provide the theoretical calculations to reduce the experiment times for the casting materials’ performance improvement.
Go to article

Authors and Affiliations

Ziqi Zhang
1
Zhilin Pan
1
ORCID: ORCID
Rong Li
1
ORCID: ORCID
Qi Zeng
2
ORCID: ORCID
Yong Liu
3
ORCID: ORCID
Quan Wu
1

  1. School of Mechanical & Electrical Engineering, Guizhou Normal University, China
  2. Guiyang Huaheng Mechanical Manufacture CO., LTD, China
  3. Guizhou University, China

This page uses 'cookies'. Learn more