Search results

Filters

  • Journals
  • Authors
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This article investigates identification of aircraft aerodynamic derivatives. The identification is performed on the basis of the parameters stored by Flight Data Recorder. The problem is solved in time domain by Quad-M Method. Aircraft dynamics is described by a parametric model that is defined in Body-Fixed-Coordinate System. Identification of the aerodynamic derivatives is obtained by Maximum Likelihood Estimation. For finding cost function minimum, Lavenberg-Marquardt Algorithm is used. Additional effects due to process noise are included in the state-space representation. The impact of initial values on the solution is discussed. The presented method was implemented in Matlab R2009b environment.

Go to article

Authors and Affiliations

Piotr Lichota
Maciej Lasek
Download PDF Download RIS Download Bibtex

Abstract

This article investigates unstable tiltrotor in hover system identification from flight test data. The aircraft dynamics was described by a linear model defined in Body-Fixed-Coordinate System. Output Error Method was selected in order to obtain stability and control derivatives in lateral motion. For estimating model parameters both time and frequency domain formulations were applied. To improve the system identification performed in the time domain, a stabilization matrix was included for evaluating the states. In the end, estimates obtained from various Output Error Method formulations were compared in terms of parameters accuracy and time histories. Evaluations were performed in MATLAB R2009b environment.

Go to article

Bibliography


[1] J. Kaletka. BO-105 identification results. In Rotorcraft System Identification, AGARD LS-178, AGARD LS-178, Paper 9, November 1991.
[2] R.K. Mehra, R.K. Prasanth, and S. Gopalaswamy. XV-15 tiltrotor flight control system design using model predictive control. In I EEE Aerospace Conference, volume 2, pages 139–148, March 1998. doi: 10.1109/AERO.1998.687905.
[3] R.E. Maine and J.E. Murray. Application of parameter estimation to highly unstable aircraft. Journal of Guidance, Control, and Dynamics, 11(3):213–219, May 1988. doi: 10.2514/3.20296.
[4] S. Weiss, H. Friehmelt, E. Plaetschke, and D. Rohlf. X-31A system identification using single-surface excitation at high angles of attack. J ournal of Aircraft, 33(3):485–490, May 1996. doi: 10.2514/3.46970.
[5] E. Özger. Parameter estimation of highly unstable aircraft assuming linear errors. In AIAA Atmospheric Flight Mechanics Conference, Minneapolis, MN, August 2012. doi: 10.2514/6.2012-4511.
[6] B. Mettler, T. Kanade, and M. Tischler. System identification modeling of a model-scale helicopter. Technical Report CMU-RI-TR-00-03, Robotics Institute, Pittsburgh, PA, January 2000.
[7] S.K. Kim and D.M. Tilbury. Mathematical modeling and experimental identification of an unmanned helicopter robot with flybar dynamics. Journal of Robotic Systems, 21(3):95–116, March 2004. doi: 10.1002/rob.20002.
[8] A. Ji and K. Turkoglu. Development of a low-cost experimental quadcopter testbed using an arduino controller for video surveillance. In AIAA Infotech @ Aerospace. AIAA, January 2015. doi: 10.2514/6.2015-0716.
[9] V. Hrishikeshavan, M. Benedict, and I. Chopra. Identification of flight dynamics of a cylcocopter micro air vehicle in hover. Journal of Aircraft, 52(1):116–129, April 2014. doi: 10.2514/1.C032633.
[10] K. Rogowski and R. Maroński. CFD computation of the Savonius rotor. Journal of Theoretical and Applied Mechanics, 53(1):37–45, 2015. doi: 10.15632/jtam-pl.53.1.37.
[11] M.B. Tischler and R.K. Remple. Aircraft and Rotorcraft System Identification. AIAA Education Series. AIAA, Washington, DC, 2 edition, August 2012. doi: /10.2514/4.868207.
[12] B. Etkin. Dynamics of Atmospheric Flight. Dover Publications, Mineola, NY, 2005.
[13] L.A. Zadeh. From circuit theory to system theory. Proceeding of the IRE, 50(5):856–865, May 1962. doi: 10.1109/JRPROC.1962.288302 .
[14] T. Söderstörm and P. Stoica. System Identification. Prentice Hall International, New York, 2001.
[15] G.C. Goodwin and R.L. Payne. Dynamic System Identification: Experiment Design and Data Analysis. Academic Press Inc., New York, 1977.
[16] R.V. Jategaonkar. Flight Vehicle System Identification: A Time Domain Methodology. Progess in Astronautics and Aeronautics. AIAA, Reston, VA, 2 edition, 2015. doi: 10.2514/4.102790.
[17] R.E. Maine and K.W. Iliff. Application of parameter estimation to aircraft stability and control: The output-error approach. Technical Report NASA-RP-1168, NASA, Edwards, CA, June 1986.
[18] V. Klein and E.A. Morelli. Aircraft System Identification: Theory and Practice. AIAA Education Series. AIAA, Reston, VA, August 2006.
[19] P. Stoica and R. Moses. Introduction to Spectral Analysis. Prentice Hall, Upper Saddle River, NJ, 2 edition, 2005.
[20] L.R. Rabiner and B. Gold. Theory and Application of Digital Signal Processing. Prentice Hall Inc., Englewood Cliffs, NJ, 1 edition, 1975.
[21] P. Young and R.J. Patton. Frequency domain identification of remotely-piloted helicopter dynamics using frequency-sweep and schroeder-phased test signals. In AIAA Atmospheric Flight Mechanics Conference, Minneapolis, MN, August 1988. AIAA. doi: 10.2514/6.1988-4349.
Go to article

Authors and Affiliations

Piotr Lichota
1
Joanna Szulczyk
1

  1. Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, Poland
Download PDF Download RIS Download Bibtex

Abstract

Quick development of computer techniques and increasing computational power allow for building high-fidelity models of various complex objects and processes using historical data. One of the processes of this kind is an air traffic, and there is a growing need for traffic mathematical models as air traffic is increasing and becoming more complex to manage. This study concerned the modelling of a part of the arrival process. The first part of the research was air separation modelling by using continuous probability distributions. Fisher Information Matrix was used for the best fit selection. The second part of the research consisted of applying regression models that best match the parameters of representative distributions. Over a dozen airports were analyzed in the study and that allowed to build a generalized model for aircraft air separation in function of traffic intensity. Results showed that building a generalized model which comprises traffic from various airports is possible. Moreover, aircraft air separation can be expressed by easy to use mathematical functions. Models of this kind can be used for various applications, e.g.: air separation management between aircraft, airports arrival capacity management, and higher-level air traffic simulation or optimization tasks.
Go to article

Authors and Affiliations

Adrian Pawełek
1
ORCID: ORCID
Piotr Lichota
1
ORCID: ORCID

  1. Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, 00-665 Warsaw, Poland

This page uses 'cookies'. Learn more