Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In the paper a transformation between two height datums (Kronstadt’60 and Kronstadt’86, the latter being a part of the present National Spatial Reference System in Poland) with the use of geostatistical method – kriging is presented. As the height differences between the two datums reveal visible trend a natural decision is to use the kind of kriging method that takes into account nonstationarity in the average behavior of the spatial process (height differences between the two datums). Hence, two methods were applied: hybrid technique (a method combining Trend Surface Analysis with ordinary kriging on least squares residuals) and universal kriging. The background of the two methods has been presented. The two methods were compared with respect to the prediction capabilities in a process of crossvalidation and additionally they were compared to the results obtained by applying a polynomial regression transformation model. The results obtained within this study prove that the structure hidden in the residual part of the model and used in kriging methods may improve prediction capabilities of the transformation model.
Go to article

Authors and Affiliations

Marcin Ligas
Marek Kulczycki
Download PDF Download RIS Download Bibtex

Abstract

A new method to transform from Cartesian to geodetic coordinates is presented. It is based on the solution of a system of nonlinear equations with respect to the coordinates of the point projected onto the ellipsoid along the normal. Newton’s method and a modification of Newton’s method were applied to give third-order convergence. The method developed was compared to some well known iterative techniques. All methods were tested on three ellipsoidal height ranges: namely, (-10 – 10 km) (terrestrial), (20 – 1000 km), and (1000 – 36000 km) (satellite). One iteration of the presented method, implemented with the third-order convergence modified Newton’s method, is necessary to obtain a satisfactory level of accuracy for the geodetic latitude ( σ φ < 0.0004”) and height ( σ h < 10 − 6 km, i.e. less than a millimetre) for all the heights tested. The method is slightly slower than the method of Fukushima (2006) and Fukushima’s (1999) fast implementation of Bowring’s (1976) method.
Go to article

Authors and Affiliations

Marcin Ligas
Piotr Banasik
Download PDF Download RIS Download Bibtex

Abstract

The aim of the paper is the comparison of the least squares prediction presented by Heiskanen and Moritz (1967) in the classical handbook “Physical Geodesy” with the geostatistical method of simple kriging as well as in case of Gaussian random fields their equivalence to conditional expectation. The paper contains also short notes on the extension of simple kriging to ordinary kriging by dropping the assumption of known mean value of a random field as well as some necessary information on random fields, covariance function and semivariogram function. The semivariogram is emphasized in the paper, for two reasons. Firstly, the semivariogram describes broader class of phenomena, and for the second order stationary processes it is equivalent to the covariance function. Secondly, the analysis of different kinds of phenomena in terms of covariance is more common. Thus, it is worth introducing another function describing spatial continuity and variability. For the ease of presentation all the considerations were limited to the Euclidean space (thus, for limited areas) although with some extra effort they can be extended to manifolds like sphere, ellipsoid, etc.
Go to article

Authors and Affiliations

Marcin Ligas
Marek Kulczycki
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an empirical comparison of performance of three well known M – estimators (i.e. Huber, Tukey and Hampel’s M – estimators) and also some new ones. The new M – estimators were motivated by weighting functions applied in orthogonal polynomials theory, kernel density estimation as well as one derived from Wigner semicircle probability distribution. M – estimators were used to detect outlying observations in contaminated datasets. Calculations were performed using iteratively reweighted least-squares (IRLS). Since the residual variance (used in covariance matrices construction) is not a robust measure of scale the tests employed also robust measures i.e. interquartile range and normalized median absolute deviation. The methods were tested on a simple leveling network in a large number of variants showing bad and good sides of M – estimation. The new M – estimators have been equipped with theoretical tuning constants to obtain 95% efficiency with respect to the standard normal distribution. The need for data – dependent tuning constants rather than those established theoretically is also pointed out.
Go to article

Authors and Affiliations

Marek Banaś
Marcin Ligas
Download PDF Download RIS Download Bibtex

Abstract

The summary of research activities concerning general theory and methodology performed in Poland in the period of 2015–2018 is presented as a national report for the 27th IUGG (International Union of Geodesy and Geophysics) General Assembly. It contains the results of research on new or improved methods and variants of robust parameter estimation and their application, especially to control network analysis. Reliability analysis of the observation system and an integrated adjustment approach are also given. The identifiability (ID) index as a new measure for minimal detectable bias (MDB) in the observation system of a network, has been introduced. A new method of covariance function parameter estimation in the least squares collocation has been developed. The robustified version of the Shift-Msplit estimation, termed as Shift-M*split estimation, which enables estimation of parameter differences (robustly), without the need of prior estimation of the parameters, has been introduced. Results on the analysis of geodetic time series, particularly Earth orientation parameter time series, geocenter time series, permanent station coordinates and sea level variation time series are also provided in this review paper. The entire bibliography of related works is provided in the references.

Go to article

Authors and Affiliations

Andrzej Borkowski
Wiesław Kosek
Marcin Ligas
Download PDF Download RIS Download Bibtex

Abstract

We present a summary of research carried out in 2019–2022 in Poland in the area of general theory and methodology in geodesy. The study contains a description of original contributions by authors affiliated with Polish scientific institutions. It forms part of the national report presented at the 28th General Assembly of the International Union of Geodesy and Geophysics (IUGG) taking place on 11-20 July 2023 in Berlin, Germany. The Polish authors developed their research in the following thematic areas: robust estimation and its applications, prediction problems, cartographic projections, datum transformation problems and geometric geodesy algorithms, optimization and design of geodetic networks, geodetic time series analysis, relativistic effects in GNSS (Global Navigation Satellite System) and precise orbit determination of GNSS satellites. Much has been done on the subject of estimating the reliability of existing algorithms, but also improving them or studying relativistic effects. These studies are a continuation of work carried out over the years, but also they point to new developments in both surveying and geodesy.We hope that the general theory and methodology will continue to be so enthusiastically developed by Polish authors because although it is not an official pillar of geodesy, it is widely applicable to all three pillars of geodesy.
Go to article

Authors and Affiliations

Anna Klos
1
ORCID: ORCID
Marcin Ligas
2
ORCID: ORCID
Marek Trojanowicz
3
ORCID: ORCID

  1. Military University of Technology, Warsaw, Poland
  2. AGH University of Science and Technology, Krakow, Poland
  3. Wroclaw University of Environmental and Life Science, Wroclaw, Poland

This page uses 'cookies'. Learn more