Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper proposes a novel method for digital image watermarking, in which watermarks are embedded in the domain of fast para-metric transforms based on known spread spectrum approaches. Fast parametric transforms have the ability to adapt the forms of base vectors, which enables automatic selection of the domain of watermarking in relation to the pair: a marked image – a watermarking attack. The process of adapting the forms of fast parametric transforms is carried out with aid of the classical genetic algorithm with the fitting function based on the known measure of separability of watermarks. The effectiveness of the proposed method has been verified experimentally on the basis of the images of two classes, i.e. natural images and technical diagrams. The results taking into account both the efficiency of watermark embedding and the generated distortions in the marked images are summarized in tables and accompanied by an appropriate commentary.

Go to article

Authors and Affiliations

P. Lipinski
D. Puchala
Download PDF Download RIS Download Bibtex

Abstract

The paper aims was assessing risks of mandible fractures consequent to impacts or sport accidents. The role of the structural stiffness of mandible, related to disocclusion state, was evaluated using the finite element method. It has been assumed, that the quasi-static stress field, due to distributed forces developed during accidents, could explain the common types of mandibular fractures. Mandibular condyles were supposed jammed in the maxillary fossae. The force of 700 N, simulating an impact on mandible, has been sequentially applied in three distinct areas: centrally, at canine zone and at the mandibular angle. Clinically most frequent fractures of mandible were recognized through the analysis of maximal principal stress/strain fields. It has been shown that mandibular fracture during accidents can be analyzed at satisfactory level using linear quasi-static models for designing protections.

Go to article

Authors and Affiliations

J. Żmudzki
G. Chladek
K. Panek
P. Lipiński

This page uses 'cookies'. Learn more