Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

As the dynamic behavior of the concrete is different from that under static load, this research focuses on the study of dynamic responses of concrete by simulating the split Hopkinson pressure bar (SHPB) test. Finite element code LS-DYNA is used for modeling the dynamic behaviors of concrete. Three continuous models are reviewed and the Holmquist-Johnson-Cook model (HJC) is introduced in detail. The HJC model which has been implemented in LS-DYNA is used to represent the concrete properties. The SHPB test model is established and a few stress waves are applied to the incident bar to simulate the dynamic concrete behaviors. The stress-strain curves are obtained. The stress distributions are analyzed. The crack initiation and propagation process are described. It is concluded that: the HJC model can modeling the entire process of the fracture initiation and fragmentation; the compressive of the concrete is significantly influenced by the strain rates.

Go to article

Authors and Affiliations

H.M. An
L. Liu
Download PDF Download RIS Download Bibtex

Abstract

MDAP-2 is a new AMP with high inhibitory activity on Salmonella gallinarum, which may be developed as an antimicrobial agent in the agricultural industry and food preservation. To investigate the underlying the action mechanism of MDAP-2 on Salmonella gallinarum, impacts of MDAP-2 on the growth curve and bacterial morphology of Salmonella gallinarum were studied. iTRAQ-based proteomics analysis was also performed on proteins extracted from treated and untreated Salmonella gallinarum cells. The differentially expressed proteins were then analyzed using the KEGG and GO databases. Finally, the function of some differentially expressed proteins was verified. The results showed that 150 proteins (41 up-regulated and 109 down-regulated) were found differentially expressed (fold > 1.8, p<0.05). The results indi- cate that MDAP-2 kills Salmonella gallinarum mainly through two mechanisms: (i) direct inhibi- tion of cell wall/ membrane/ envelope biogenesis, energy production/ conversion, carbohydrate transport/ metabolism, and DNA transcription/ translation through regulation of special protein levels; (ii) indirect effects on the same pathway through the accumulation of Reactive oxygen species (O2 ▪-, H2O2 and OH▪-).

Go to article

Authors and Affiliations

Y. Zhang
S. Yu
X. Ying
B. Jia
L. Liu
J. Liu
L. Kong
Z. Pei
H. Ma
Download PDF Download RIS Download Bibtex

Abstract

Classical swine fever (CSF) and porcine reproductive and respiratory syndrome (PRRS) are responsible for major economic losses and represent a threat to the swine industry worldwide. Routine surveillance serology for CSF and PRRS viruses is critical to maintaining the health status of sow farms in Hunan Province, which is one of the top pig production provinces in China. The aim of our study was to investigate the serological statistics of CSF virus (CSFV) and PRRS virus (PRRSV) in Hunan Province. The cohort serum samples were collected from vaccinated and unvaccinated pigs. Our findings showed that the average rates of CSFV and PRRSV antibody seropositivity were 82.2% (95% CI: 80.1-84.3) and 84.8% (95% CI: 82.5-87.1), respectively, in the immunized group and that these rates were higher than those in the unvaccinated group (58.6% for CSFV and 47.8% for PRRSV). Additionally, the level of CSFV antibody in piglet serum declined gradually with age, whereas PRRSV-specific antibody level increased initially (1 to 2 weeks old) and then declined with age (2 to 4 weeks old). In summary, we investigated the difference in CSFV/PRRSV antibody levels among piglets at various weeks old (1 to 4 weeks) to further establish the duration of maternal immunity in piglets. In addition, routine monitoring of CSFV/PRRSV antibodies in immunized pigs was carried out to evaluate the efficacy of vaccination.
Go to article

Bibliography


Brown VR, Bevins SN (2018) A Review of Classical Swine Fever Virus and Routes of Introduction into the United States and the Potential for Virus Establishment. Front Vet Sci 5: 31.
Chae C (2021) Commercial PRRS Modified-Live Virus Vaccines. Vaccines (Basel) 9: 185.
Deka D, Barman NN, Deka N, Batth BK, Singh G, Singh S, Agrawal RK, Mukhopadhyay CS, Ramneek (2021) Sero-epidemiology of por-cine parvovirus, circovirus, and classical swine fever virus infections in India. Trop Anim Health Prod 53: 180.
Farsang A, Lévai R, Barna T, Fábián K, Blome S, Belák K, Bálint Á, Koenen F, Kulcsár G (2017) Pre-registration efficacy study of a novel marker vaccine against classical swine fever on maternally derived antibody positive (MDA+) target animals. Biologicals 45: 85-92.
Gao JC, Xiong JY, Ye C, Chang XB, Guo JC, Jiang CG, Zhang GH, Tian ZJ, Cai XH, Tong GZ, An TQ (2017) Genotypic and geographical distribution of porcine reproductive and respiratory syndrome viruses in mainland China in 1996-2016. Vet Microbiol 208: 164-172.
Gong W, Li J, Wang Z, Sun J, Mi S, Lu Z, Cao J, Dou Z, Sun Y, Wang P, Yuan K, Zhang L, Zhou X, He S, Tu C (2019) Virulence evalua-tion of classical swine fever virus subgenotype 2.1 and 2.2 isolates circulating in China. Vet Microbiol 232: 114-120.
Goraya MU, Ziaghum F, Chen S, Raza A, Chen Y, Chi X (2018) Role of innate immunity in pathophysiology of classical swine fever virus infection. Microb Pathog 119: 248-254.
Guo Z, Chen XX, Li R, Qiao S, Zhang G (2018) The prevalent status and genetic diversity of porcine reproductive and respiratory syndrome virus in China: a molecular epidemiological perspective. Virol J 15: 2.
Han M, Yoo D (2014) Engineering the PRRS virus genome: updates and perspectives. Vet Microbiol 174: 279-295.
Luo Y, Li S, Sun Y, Qiu HJ (2014) Classical swine fever in China: a minireview. Vet Microbiol 172: 1-6.
Madapong A, Saeng-Chuto K, Chaikhumwang P, Tantituvanont A, Saardrak K, Pedrazuela Sanz R, Miranda Alvarez J, Nilubol D (2020) Immune response and protective efficacy of intramuscular and intradermal vaccination with porcine reproductive and respiratory syndrome vi-rus 1 (PRRSV-1) modified live vaccine against highly pathogenic PRRSV-2 (HP-PRRSV-2) challenge, either alone or in combination with of PRRSV-1. Vet Microbiol 244: 108655.
Montaner-Tarbes S, Del Portillo HA, Montoya M, Fraile L (2019) Key Gaps in the Knowledge of the Porcine Respiratory Reproductive Syndrome Virus (PRRSV). Front Vet Sci 6: 38.
Stoian AM, Rowland RR (2019) Challenges for Porcine Reproductive and Respiratory Syndrome (PRRS) Vaccine Design: Reviewing Virus Glycoprotein Interactions with CD163 and Targets of Virus Neutralization. Vet Sci 6: 9.
Suradhat S, Damrongwatanapokin S, Thanawongnuwech R (2007) Factors critical for successful vaccination against classical swine fever in endemic areas. Vet Microbiol 119: 1-9.
VanderWaal K, Deen J (2018) Global trends in infectious diseases of swine. Proc Natl Acad Sci USA 115: 11495-11500.
Yin B, Qi S, Sha W, Qin H, Liu L, Yun J, Zhu J, Li G, Sun D (2021) Molecular Characterization of the Nsp2 and ORF5 (ORF5a) Genes of PRRSV Strains in Nine Provinces of China During 2016-2018. Front Vet Sci 8: 605832.
Zhang H, Leng C, Tian Z, Liu C, Chen J, Bai Y, Li Z, Xiang L, Zhai H, Wang Q, Peng J, An T, Kan Y, Yao L, Yang X, Cai X, Tong G (2018) Complete genomic characteristics and pathogenic analysis of the newly emerged classical swine fever virus in China. BMC Vet Res 14: 204.
Zhou B (2019) Classical Swine Fever in China-An Update Minireview. Front Vet Sci 6: 187.
Zhou L, Ge X, Yang H (2021) Porcine Reproductive and Respiratory Syndrome Modified Live Virus Vaccine: A “Leaky” Vaccine with Debatable Efficacy and Safety. Vaccines (Basel) 9: 362.
Go to article

Authors and Affiliations

H. Yu
1
L. Zhang
1
Y. Cai
1
Z. Hao
2
Z. Luo
3
T. Peng
1
L. Liu
N. Wang
1
G. Wang
1
Z. Deng
1
Y. Zhan
1

  1. Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Research Center of Reverse Vaccinology (RCRV), and Laboratory of Functional Proteomics (LFP), College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, China
  2. Yongzhou Animal Husbandry and Aquatic Affairs Center, Yongzhou, Hunan 425000, China
  3. Dingcheng Animal Husbandry and Aquatic Affairs Center, Changde, Hunan 415100, China
Download PDF Download RIS Download Bibtex

Abstract

MDAP-2 is a new antibacterial peptide with a unique structure that was isolated from house- flies. However, its biological characteristics and antibacterial mechanisms against bacteria are still poorly understood. To study the biological characteristics, antibacterial activity, hemolytic activi- ty, cytotoxicity to mammalian cells, and the secondary structure of MDAP-2 were detected; the results showed that MDAP-2 displayed high antibacterial activity against all of the tested Gram-negative bacteria. MDAP-2 had lower hemolytic activity to rabbit red blood cells; only 3.4% hemolytic activity was observed at a concentration of 800μg/ml. MDAP-2 also had lower cytotoxicity to mammalian cells; IC50 values for HEK-293 cells, VERO cells, and IPEC-J2 cells were greater than 1000 μg/ml. The circular dichroism (CD) spectra showed that the peptide most- ly has α-helical properties and some β-fold structure in water and in membrane-like conditions. MDAP-2 is therefore a promising antibacterial agent against Gram-negative bacteria. To deter- mine the antibacterial mechanism(s) of action, fluorescent probes, flow cytometry, and transmis- sion electron microscopy (TEM) were used to study the effects of MDAP-2 on membrane perme- ability, polarization ability, and integrity of Gram-negative bacteria. The results indicated that the peptide caused membrane depolarization, increased membrane permeability, and destroyed membrane integrity. In conclusion, MDAP-2 is a broad-spectrum, lower hemolytic activity, and lower cytotoxicity antibacterial peptide, which is mainly effective on Gram-negative bacteria. It exerts its antimicrobial effects by causing bacterial cytoplasm membrane depolarization, increas- ing cell membrane permeability and disturbing the membrane integrity of Gram-negative bacte- ria. MDAP-2 may offer a new strategy to for defense against Gram-negative bacteria.

Go to article

Authors and Affiliations

Z. Pei
X. Ying
Y. Tang
L. Liu
H. Zhang
S. Liu
D. Zhang
K. Wang
L. Kong
Y. Gao
H. Ma

This page uses 'cookies'. Learn more