Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

An intelligent boundary switch is a three-phase outdoor power distribution device equipped with a controller. It is installed at the boundary point on the medium voltage overhead distribution lines. It can automatically remove the single-phase-to-ground fault and isolation phase-to-phase short-circuit fault. Firstly, the structure of an intelligent boundary switch is studied, and then the fault detection principle is also investigated. The single-phase-to-ground fault and phase-to-phase short-circuit fault are studied respectively. A method using overcurrent to judge the short-circuit fault is presented. The characteristics of the single-phase-to-ground fault on an ungrounded distribution system and compositional grounded distribution system are analyzed. Based on these characteristics, a method using zero sequence current to detect the single-phase-to-ground fault is proposed. The research results of this paper give a reference for the specification and use of intelligent boundary switches.

Go to article

Authors and Affiliations

Ling Liu
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

When a single line-to-ground fault occurs in the ungrounded distribution system, the steady-state fault current is relatively small for fault analysis and the transient fault current is observable, which can be used for faulted feeder identification and location. The principal frequency component retains most of the characteristics of the transient current. The principal frequency is related to the distance from the fault point to the substation and can be used for fault location. This paper analyzes the sequence network model of a single line-to-ground fault in the distribution network, and gives a method for principal frequency calculation. Depending on the characteristics of the maximum amplitude of the principal frequency component of the faulted feeder, the method of faulted feeder identification is given. Based on the complementary characteristics of the phase angle of the principal frequency component of the fault current and the phase angle at the substation bus, the faulted section location is carried out. MATLAB simulation is used to verify the effectiveness of the faulted feeder identification and location method.

Go to article

Authors and Affiliations

Ling Liu
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Low-power consumption and long-distance transmission are two problems that have to be solved by the application of broadband power line communication for the automatic meter reading system. To reduce the power consumption of the communication module, based on the analysis of the composition of the power consumption, some methods are proposed. From the communication chip level and the module circuit level, the design scheme of low-power consumption is given. To solve the problem of transmission distance, a frequency band of 2.44 MHz~5.6 MHz is used as the main working frequency band. The communication module supports multiple frequency bands. Using this feature, the optimal frequency band is adaptively selected for communication and automatic switching, which further improve the transmission distance. Field application shows that the above methods effectively decrease the power consumption of the communication module and extend the transmission distance.

Go to article

Authors and Affiliations

Xia Chen
Ling Liu
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

As for a single line-to-ground fault in an ungrounded distribution system, the power-frequency current is too low to detect the fault. The transient current is more palpable than that at a power-frequency of 50 or 60 Hz. It is an effective method to estimate the fault using the transient fault current. To analyze and calculate the transient current of single line-to-ground faults, an equivalent circuit is proposed in this paper. This model is based on distributed parameters of power lines. And it contains positive, negative and zero sequence information. The transient equivalent circuit consists of equivalent resistance, equivalent inductance and equivalent capacitance. And the method of calculation the equivalent ele- ments is also submitted.MATLAB simulation results showthat the newtransient equivalent circuit has higher accuracy and stronger adaptability compared with the traditional one.

Go to article

Authors and Affiliations

Jun Jiang
Ling Liu
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The discrete Fourier transform (DFT) is a principal method for power system harmonic analysis. The fundamental frequency of the power system increases or decreases following load changes during normal operation. It is difficult to achieve synchronous sampling and integer period truncation in power harmonic analysis. The resulting spectrum leakage affects the accuracy of the measurement results. For this reason, a windowed interpolation DFT method for power system harmonic analysis to reduce errors was presented in this paper. First, the frequency domain expression of the windowed signal Fourier transform is analyzed. Then, the magnitude of the three discrete spectrum lines near the harmonic frequency point is used to determine the accurate position of the harmonic spectrum. Then, the calculation of the amplitude, frequency, and phase of harmonics is presented. The tripleline interpolation DFT can improve the accuracy of electrical harmonic analysis. Based on the algorithm, the practical rectification formulas were obtained by using the polynomial approximation method. The simulation results show that the fast attenuation of window function sidelobe is the key to reduce the error. The triple-line interpolation DFT based on Hanning, Blackman, Nuttall 3-Term windows has higher calculation accuracy, which can meet the requirements of electrical harmonic analysis.
Go to article

Bibliography

[1] Schlabbach J., Blume D., Stephanblome T., Voltage quality in electrical power systems, The Institution of Engineering and Technology (2001).
[2] Yudaev I.V., Rud E.V., Yundin M.A., Ponomarenko T.Z., Isupova A.M., Analysis of the harmonic composition of current in the zero-working wire at the input of the load node with the prevailing non-linear power consumers, Archives of Electrical Engineering, vol. 70, no. 2, pp. 463–473 (2021), DOI: 10.24425/aee.2021.136996.
[3] Short T., Electric Power Distribution Handbook, Second Edition, CRC Press (2014).
[4] IEC 61000-4-30, Testing and measurement techniques-Power quality measurement methods (2008).
[5] IEC 61000-4-7, Testing and measurement techniques-General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto (2009).
[6] Jos Arrillaga, Neville R. Watson, Power system Harmonics, Second Edition, John Wiley & Sons, Chichester, England (2004).
[7] Lyons R.G., Understanding Digital Signal Processing, Second Edition, Prentice Hall PTR (2004).
[8] Pang Hao, Li Dongxia, Zu Yunxiao et al., An improved algorithm for harmonic analysis of power system using FFT Technique, Proceedings of the CSEE, vol. 23, no. 6, pp. 50–54 (2003).
[9] Xu Y., Liu Y., Li Z., An accurate approach for harmonic detection based on 6-term cosine window and quadruple-spectrum-line interpolation FFT, Power System Protection and Control, vol. 44, no. 22, pp. 56–63 (2016), DOI: 10.7667/PSPC151933.
[10] Zhang C., Wang W., Qiu Y., Detection Method of Subsynchronous Harmonic in Regions with Large ScaleWind Power Paralleled in Grid, High Voltage Engineering, vol. 45, no. 7, pp. 2194–2202 (2019), DOI: 10.13336/j.1003-6520.hve.20181207008.
[11] Pham V.L., Wong K.P., Wavelet-transform-based algorithm for harmonic analysis of power system waveforms, IEE Proceedings on Generation, Transmission and Distribution, vol. 146, no. 3, pp. 249–254 (1999), DOI: 10.1049/ip-gtd:19990316.
[12] Liu Jun, Dai Benqi, Wang Zhiyue, Power harmonic analysis based on wavelet and FFT transform, J. Relay, vol. 35, no. 23, pp. 55–59 (2007).
[13] Cichocki A., Lobos T., Artificial neural networks for real-time estimation of basic waveforms of voltages and currents, IEEE Transactions on Power Systems, vol. 9, no. 2, pp. 612–618 (1994), DOI: 10.1109/59.317683.
[14] Xiang Dongyang, Wang Gongbao, Ma Weiming et al., A new method for non-integer harmonics measurement based on FFT algorithm and neutral network, Proceedings of the CSEE, vol. 25, no. 9, pp. 35–39 (2005), DOI: 10.3321/j.issn:0258-8013.2005.09.007.
[15] Jiao L., Du Y., An Approach for Electrical Harmonic Analysis Based on Interpolation DFT, Archives of Electrical Engineering, vol. 71, no. 2, pp. 445–454 (2022), DOI: 10.24425/aee.2022.140721.
[16] Nuttall A.H., Some Windows with Very Good Sidelobe Behavior, IEEE Transactions on Acoustics Speech and Signal Processing, vol. 29, no. 1, pp. 84–91 (1981), DOI: 10.1109/TASSP.1981.1163506.
Go to article

Authors and Affiliations

Ling Liu
1
ORCID: ORCID
Jinsong Zhang
1

  1. Shandong Polytechnic, China
Download PDF Download RIS Download Bibtex

Abstract

Iron black commonly employs in thermal insulation riser sleeves due to its ability to react with aluminum powder, generating heat. However, the complex production process and unstable composition of iron black lead to high production costs. The potential of using arc furnace flue ash (AFFA) as a complete substitute for iron black and MnO2 and KNO3 oxidizing agents in conventional riser sleeves was investigated in this study. Waste material can be transformed into a valuable resource, while production costs can be reduced by utilizing arc furnace flue ash. The research examined the impact of varying types and amounts of arc furnace flue ash on riser sleeve temperature and holding time by conducting single-factor and orthogonal optimization experiments. The orthogonal optimization experiment determined that the optimum ratio of each oxidant was 6 % arc flue ash, 3 % MnO2 and 6 % KNO3. At this time, the highest temperature was 1512 ℃ and the holding time was 244 s. Results indicated that different types of arc furnace flue ash used as an oxidizing agent demonstrated superior holding capacity and heat generation performance compared to iron black. Additionally, a comparative analysis of factory casting experiments using ductile iron 600-3 (IS) revealed that both arc furnace flue ash and iron black risers effectively countered shrinkage. However, arc furnace flue ash risers exhibited improved mechanical properties, as evidenced by the hardness of the castings.
Go to article

Bibliography

[1] Lu, J.J., Qian, J.B., Yang, L. & Wang, H.F. (2023). Preparation and performance optimization of organosilicon slag exothermic insulating riser. Archives of Foundry Engineering. 23(1), 75-82. DOI: 10.24425/afe.2023.144283.
[2] Vasková, I., Conev, M. & Hrubovčáková, M. (2017). The influence of using different types of risers or chills on shrinkage production for different wall thickness for material EN-GJS-400-18LT. Archives of Foundry Engineering. 17(2), 131-136. DOI: 10.1515/afe-2017-0064.
[3] Sowa, L., Skrzypczak, T. & Kwiatoń, P. (2019). The influence of riser shape on feeding effectiveness of solidifying casting. Archives of Foundry Engineering. 19(4), 91-94. DOI: 10.24425/afe.2019.129636.
[4] Krajewski, P.K., Gradowski, A. & Krajewski, W.K. (2013). Heat exchange in the system mould - riser - ambient. part ii: surface heat emission from open riser to ambient. Archives of Metallurgy and Materials. 58(4), 1149-1153. DOI: 10.2478/amm-2013-0140.
[5] Xu, X. Hui,G,D. Ma, B, H . et al. (2017). Research on high efficiency heat insulation risers for casting. Casting technology. 38(03), 726-728. (in Chinese).
[6] Zhang, S.L., Wu, B., Qin, Z.G.,et al .(2010). Ignition temperature of 2Al/Fe2O3 aluminum thermite. Energy Containing Materials. 18(02), 162-166. (in Chinese).
[7] Duan, W. H., Li, G., Zu. C.S., et al (2017). Control of critical characteristics of heat-insulating riser sleeves and countermeasures for application problems. China Casting Equipment and Technology, 2017(06), 20-24. (in Chinese).
[8] Sambo, A. & Szymanek, A. (2014). Analysis of the distribution of chemical compounds from fly ash exposed to weather. Chemical and Process Engineering. 35(3), 265-275. DOI: 10.2478/cpe-2014-0020.
[9] Chen, J. (2022). Application of steelmaking electric arc furnace ash in sintered bricks[J]. Brick and Tile, 2020 (7): 25-27. DOI:10.16001/j.cnki.1001-6945.2020.07.011.
[10] Wang, J., Zhang, Y.Y., Cui, K.K., Fu. T., Gao, J.J. Shahid Hussain, Tahani Saad AlGarni. (2021). Pyrometallurgical recovery of zinc and valuable metals from electric arc furnace dust – A review. Journal of Cleaner Production. 298, 126788. DOI:10.1016/j.jclepro.2021.126788.
[11] Donald, J.R. & Pickles, C.A. (1996). Reduction of electric arc furnace dust with solid iron powder. Canadian Metallurgical Quarterly. 35(3), 255-267. DOI:10.1016/0008-4433(96)00009-2.
[12] Lin, X.L. Peng. Z.W., Yan. J.X., Li. Z., Z. Hwang, J.Y. Zhang, Y.B., Li, G.H., Jiang, T. (2017). Pyrometallurgical recycling of electric arc furnace dust. Journal of Cleaner Production. 149, 1079-1100. DOI:10.1016/j.jclepro.2017.02.128.
[13] Abhilash T. Nair, Aneesh Mathew, Archana A R, M Abdul Akbar.(2022). Use of hazardous electric arc furnace dust in the construction industry: A cleaner production approach. Journal of Cleaner Production. 377, 134282, 0959-6526. DOI:10.1016/j.jclepro.2022.134282
Go to article

Authors and Affiliations

Junjie Zhu
1
ORCID: ORCID
Jian Feng
2
ORCID: ORCID
Ling Liu
1
ORCID: ORCID
Huafang Wang
1
ORCID: ORCID
Jijun Lu
1
ORCID: ORCID

  1. School of Mechanical Engineering and Automation, Wuhan Textile University, China
  2. CRRC Corporation Limited, China

This page uses 'cookies'. Learn more