Search results

Filters

  • Journals
  • Autorzy
  • Keywords
  • Data
  • Typ

Search results

Number of results: 97
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the thermodynamic investigation on the use of geothermal water (130°C as maximum) for power generation through a basic Rankine has been presented together with obtained main results. Six typical organic working fluids (i.e., R245fa, R141b, R290, R600, R152a, and 134a) were studied with modifying the input pressure and temperature to the turbine. The results show that there are no significant changes taking place in the efficiency for these working fluids with overheating the inlet fluid to the turbine, i.e., efficiency is a weak function of temperature. However, with the increasing of pressure ratio in the turbine, the efficiency rises more sharply. The technical viability is shown of implementing this type of process for recovering low temperature heat resource.
Go to article

Authors and Affiliations

Yan-Na Liu
Song Xiao
Download PDF Download RIS Download Bibtex

Abstract

The primary evaluation of the economic losses caused by water pollution in Shanghai in the year 2009 is made by classification approach in order to provide basis for decision of the relative water management policy. The result shows that the portion of water pollution losses in GDP of Shanghai was 2.7%, which was still lower than the average level of whole China despite of the local high population density and the scale of industry, suggesting to some extent the continuous attention in water protection paid by Shanghai government.

Go to article

Authors and Affiliations

Bin Xu
Yan Liu
Download PDF Download RIS Download Bibtex

Abstract

In this study, medium-carbon steel was subjected to warm deformation experiments on a Gleeble 3500 thermosimulator machine at temperatures of 550°C and 650°C and strain rates of 0.001 s–1 to 1 s–1. The warm deformation behavior of martensite and the effects of strain rate on the microstructure of ultrafine grained medium-carbon steel were investigated. The precipitation behavior of Fe3C during deformation was analyzed and the results showed that recrystallization occurred at a low strain rate. The average ultrafine ferrite grains of 500 ± 58 nm were fabricated at 550°C and a strain rate of 0.001 s–1. In addition, the size of Fe3C particles in the ferrite grains did not show any apparent change, while that of the Fe3C particles at the grain boundaries was mainly affected by the deformation temperature. The size of Fe3C particles increased with the increasing deformation temperature, while the strain rate had no significant effect on Fe3C particles. Moreover, the grain size of recrystallized ferrite decreased with an increase in the strain rate. The effects of the strain rate on the grain size of recrystallized ferrite depended on the deformation temperature and the strain rate had a prominent effect on the grain size at 550°C deformation temperature. Finally, the deformation resistance apparently decreased at 550°C and strain rate of 1 s–1 due to the maximum adiabatic heating in the material.

Go to article

Authors and Affiliations

Q. Yuan
G. Xu
S. Liu
M. Liu
H. Hu
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates state estimation of linear time-invariant systems where the sensors and controllers are geographically separated and connected over limited capacity, additive white Gaussian noise (AWGN) communication channels. Such channels are viewed as dropout (erasure) channels. In particular, we consider the case with limited data rates, present a necessary and sufficient condition on the data rate for mean square observability over an AWGN channel. The system is mean square observable if the data rate of the channel is larger than the lower bound given. It is shown in our results that there exist the inherent tradeoffs among the limited data rate, dropout probability, and observability. An illustrative example is given to demonstrate the effectiveness of the proposed scheme.

Go to article

Authors and Affiliations

Qingquan Liu
Rui Ding
Chunqiang Chen
Download PDF Download RIS Download Bibtex

Abstract

The matrix rectifier modulated by the classical space vector modulation (SVM) strategy generates common-mode voltage (CMV). The high magnitude and high du/dt of the CMV causes serious problems such as motor damage, electromagnetic noise and many others. In this paper, an improved SVM strategy is proposed by replacing the zero vectors with suitable couple of active ones that substantially eliminate the CMV. Theoretical analysis proves that the proposed strategy can reduce the amplitude of the CMV to half of the original value. In addition, the quality of the input and output waveforms is not affected by extra active vectors. Simulation and experimental results demonstrate the feasibility and effectiveness of the proposed strategy are shown.

Go to article

Authors and Affiliations

Xiao Liu
Qingfan Zhang
Dianli Hou
Download PDF Download RIS Download Bibtex

Abstract

The pole phase modulation (PPM) technique is an effective method to extend speed range and torque capabilities for an integrated starter and hybrid electric vehicles applications. In this paper, the five pole-phase combination types of a multiphase induction motor (IM) with 36 stator slots and 36 stator conductors are presented and compared quantitatively by using the time-stepping finite element method (TS-FEM). The 36 stator conductors of the proposed multiphase IM are fed by a 36 leg inverter and the current phase angle and amplitude of each stator conductor can be controlled independently. This paper focuses on the winding connection, the PPM technique and the performance comparative analysis of each pole-phase combination types of the proposed multiphase IM. The flux distribution, air-gap flux density, output torque, core losses and efficiency of five pole-phase combination types have been investigated.

Go to article

Authors and Affiliations

Huijuan Liu
Jun Wang
Zhenyang Zhang
Download PDF Download RIS Download Bibtex

Abstract

Cu–4.7 wt. % Sn alloy wire with Ø10 mm was prepared by two-phase zone continuous casting technology, and the temperature field, heat

and fluid flow were investigated by the numerical simulated method. As the melting temperature, mold temperature, continuous casting

speed and cooling water temperature is 1200 °C, 1040 °C, 20 mm/min and 18 °C, respectively, the alloy temperature in the mold is in the

range of 720 °C–1081 °C, and the solid/liquid interface is in the mold. In the center of the mold, the heat flow direction is vertically

downward. At the upper wall of the mold, the heat flow direction is obliquely downward and deflects toward the mold, and at the lower

wall of the mold, the heat flow deflects toward the alloy. There is a complex circular flow in the mold. Liquid alloy flows downward along

the wall of the mold and flows upward in the center.

Go to article

Authors and Affiliations

J. Luo
X. Liu
X. Wang
Download PDF Download RIS Download Bibtex

Abstract

Management and Production Engineering Review (MPER) is a peer-refereed, international, multidisciplinary journal covering a broad spectrum of topics in production engineering and management. Production engineering is a currently developing stream of science encompassing planning, design, implementation and management of production and logistic systems. Orientation towards human resources factor differentiates production engineering from other technical disciplines. The journal aims to advance the theoretical and applied knowledge of this rapidly evolving field, with a special focus on production management, organisation of production processes, management of production knowledge, computer integrated management of production flow, enterprise effectiveness, maintainability and sustainable manufacturing, productivity and organisation, forecasting, modelling and simulation, decision making systems, project management, innovation management and technology transfer, quality engineering and safety at work, supply chain optimization and logistics. Management and Production Engineering Review is published under the auspices of the Polish Academy of Sciences Committee on Production Engineering and Polish Association for Production Management. The main purpose of Management and Production Engineering Review is to publish the results of cutting-edge research advancing the concepts, theories and implementation of novel solutions in modern manufacturing. Papers presenting original research results related to production engineering and management education are also welcomed. We welcome original papers written in English. The Journal also publishes technical briefs, discussions of previously published papers, book reviews, and editorials. Letters to the Editor-in-Chief are highly encouraged.
Go to article

Authors and Affiliations

Vesa-Jukka Vornanen
Josu Takala
Yang Liu
Download PDF Download RIS Download Bibtex

Abstract

Due to the difficulty of detecting traces of organic acid mixture in an aqueous sample and the complexity of resolving UV-Vis spectra effectively, a combinatory method based on a self-made radical electric focusing solid phase extraction (REFSPE) device, UV-Vis detection and partial least squares (PLS) calculation is proposed here. In this study, REFSPE was used to enhance the extraction process of analytes between the aqueous phase and the membrane phase to enrich the trace of mixed organic acid efficiently. Then, the analytes, which were eluted from the adsorption film by ethanol with the assistance of an ultrasonic cleaning machine, were detected with UV-Vis spectrophotometry. After that, the PLS method was introduced to solve the problem of overlapping peaks in UV-Vis spectra of mixed substances and to quantify each compound. The linearly dependent coefficients between the predicted value of the model and the actual concentration of the sample were all higher than 0.99. The limit values of detection for benzoic acid, phthalic acid and p-toluene sulfonic acid were found at 9.9 µg/L, 12.2 µg/L and 13.8 µg/L with the relative recovery values between 84.8% and 117.9%. The RSD (n = 20) values of each component are 1.17%, 1.11% and 0.86%, respectively. Therefore, the proposed combined method can determine traces of complex materials in an aqueous sample efficiently and has wonderful potential applications.
Go to article

Authors and Affiliations

Guo Yugao
Liu Xia
Liu Jianyi
Bian Xihui
Zhang Qingyin
Pan Jie
Wan Dong
Download PDF Download RIS Download Bibtex

Abstract

In order to compare the pathogenicity of different Tembusu virus (TMUV) strains from geese, ducks and chickens, 56 5-day-old Cherry Valley ducklings which were divided into 7 groups and infected intramuscularly with 7´105 PFU/ml per duck of six challenge virus stocks. The clinical signs, weight gain, mortality, macroscopic and microscopic lesions, virus loads in sera of 1, 3, 5, 7, 11 and 14 dpi and serum antibody titers were examined. The results showed that these viruses could make the young ducks sick, but the clinical signs differed with the different species-original strains. All the experimental groups lose markedly in weight gain compared to the control, but there were no obvious distinctions in weight gains, as well as macroscopic and microscopic lesions of dead ducks between the infected groups. However, the groups of waterfowl-derived strains (from geese and ducks) showed more serious clinical signs and higher relative expressions of virus loads in sera than those from chicken-derived. The mortality of waterfowl groups was 37.5%, and the greatest mortality of chicken groups was 12.5%. The serum antibodies of the geese-species group JS804 appeared earlier and were higher in the titers than others. Taken toghter, the pathogenicity of waterfowl-derived TMUV was more serious than chicken-derived TMUV and JS804 could be chosen as one TMUV vaccine strain to protect from the infection.
Go to article

Authors and Affiliations

Y. Li
Q. Liu
T. Xu
X. Huang
X. Liu
K. Han
Y. Liu
J. Yang
D. Zhao
K. Bi
W. Sun
Download PDF Download RIS Download Bibtex

Abstract

One of the most critical aspects of mine design is to determine the optimum cut-off grade. Despite Lane’s theory, which aims to optimize the cut-off grade by maximizing the net present value (NPV), which is now an accepted principle used in open pit planning studies, it is less developed and applied in optimizing the cut-off grade for underground polymetallic mines than open pit mines, as optimization in underground polymetallic mines is more difficult. Since there is a similar potential for optimization between open pit mines and underground mines, this paper extends the utilization of Lane’s theory and proposes an optimization model of the cut-off grade applied to combined mining-mineral processing in underground mines with multi-metals. With the help of 3D visualization model of deposits and using the equivalent factors, the objective function is expressed as one variable function of the cut-off grade. Then, the curves of increment in present value versus the cut-off grade concerning different constraints of production capacities are constructed respectively, and the reasonable cut-off grade corresponding to each constraint is calculated by using the golden section search method. The defined criterion for the global optimization of the cut-off grade is determined by maximizing the overall marginal economics. An underground polymetallic copper deposit in Tibet is taken as an example to validate the proposed model in the case study. The results show that the overall optimum equivalent cut-off grade, 0.28%, improves NPV by RMB 170.2 million in comparison with the cut-off grade policy currently used. Thus, the application of the optimization model is conducive to achieving more satisfactory economic benefits under the premise of the rational utilization of mineral resources.

Go to article

Authors and Affiliations

Di Liu
Guoqing Li
Nailian Hu
Guolin Xiu
Zhaoyang Ma

This page uses 'cookies'. Learn more