Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The vegetation of the Chernihiv city sands (natural and technogenic origin) has rather high syntaxonomic diversity (17 associations and 5 initial communities) and the ruderal phytocoenoses prevail. Natural phytocenoses are represented to a small extent (Cyperetum flavescentis Koch 1926, Dichostylidi–Helochloetum alopecuroidis (Timar 1950) Pietsch 1973, Artemisia scoparia–Dianthus borbasii community, Kochietum arenariae Fijalk 1978). Synanthropic psammophytes species communities that are more resistant to anthropogenic influence, are formed under urban conditions. The ecological range of vegetation of sandy alluvia varies from xerophytic phytocoenoses in mineral-poor sand (Kochietum arenariae) to the communities, which indicate waterlogged areas with increased mineralization of water and saline bottom sediments (Typhetum laxmannii Nedulcu 1968). Itispossibletoobserve the adventization and apophization of sand vegetation, one of the indicators of which is the rupture of coenotic connections between the species of the community. These phenomena indicate that the process of synanthropization of the vegetation cover of the city keeps intensifying, and first of all, occurs in places of newly formed technogenic ecotopes.

Go to article

Authors and Affiliations

Oleksandr Lukash
Hanna Danko
Download PDF Download RIS Download Bibtex

Abstract

In Chernihiv Polesie Solidago canadensis most often grows in ruderal communities of the Berteroëtum incanae association. Characteristic plant species of the Artemisietea vulgaris class have been found in many phytocenoses with Solidago canadensis. A typical ruderal community dominated by S. canadensis was found, in which characteristic species of the xero-mesophytic ruderal vegetation of the Onopordion acanthii are well represented. Initial communities with the S. canadensis coverage of 25 to 60% in combination with the species of this order and the characteristic species of other high syntaxa were found. Most of them are the transformed meadow phytocenoses of the river floodplains and less often – the psammophytic phytocenoses of pine terraces. The process of ruderalization of meadow ecosystems as a result of the invasion of S. canadensis in Chernihiv Polesie was revealed. This process is especially pronounced on the loess islands, where meadows change into semiruderal grasslands and herblands of the Convolvulo arvensis– Agropyrion repentis alliance. S. canadensis invasion leads to xerophytization and unification of the floodplains meadow phytocenoses grassland. The course of these processes is accelerated by anthropogenic pressure on ecosystems and has irreversible consequences. S. canadensis rarely occurs in the Koelerio–Corynephoretea canescentis class psammophytic communities
Go to article

Bibliography

Abhilasha, D., Quintana, N., Vivanco, J., Joshi, J., 2008. Do allelopathic compounds in invasive Solidago canadensis s.l. restrain the native European flora? Journal of Ecology 96, 993–1001.

Arepieva, L.A., Kulikova, Е.Ya., 2017. Сommunities with Solidago canadensis and S. gigantea in the cities of Kursk, Bryansk and Minsk. Plant diversity 3 (11), 38–43 (in Russian).

Bielecka, A., Borkowska, L., Królak, E., 2020. Environmental changes caused by the clonal invasive plant Solidago canadensis. Annales Botanici Fennici. Finnish Zoological and Botanical Publishing Board 57 (1–3), 33–48.

Burda, R.I., Pashkevich, N.A., Boyko, G.V., Fitsaylo, T.V., 2015. Alien species of natural flora of the Forest-Steppe and Steppe. Scientific Opinion of the National Academy of Sciences of Ukraine, Kyiv, 120 pp. (in Ukrainian).

Daineka, M., Timofeev, S., 2018. Development of invasive species Canadian goldenrod (Solidago canadensis L.) in Vetka and Chechersk districts of Gomel region. Bulletin of Science and Practice 4 (4), 12–19 (in Russian).

Dassonville, N., Vanderhoeven, S., Vanparys, V., Hayez, M., Gruber, W., Meerts, P., 2008. Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe. Oecologia 157, 131–140.

Dubovik, D.V., Skuratovich, A.N., Miller, D., Spiridovich, E.V., Gorbunov, Yu.N., Vinogradova, Yu.K., 2019. The invasiveness of Solidago canadensis in the Sanctuary «Prilepsky» (Belarus). Nature Conservation Research 4 (2), 48–56.

Gusev, A.P., 2015. Impact of invasion of Canadian goldenrod (Solidago canadensis L.) on restorative succession in abandoned lands (southeast of Belarus). Russian Journal of Biological Invasions 6 (2), 74–77 (in Russian).

Gusev, A.P., Shpileuskaya, N.S., 2016. Invasion of Canadian Goldenrod (Solidago canadensis L.) in a technogenic landscape (on example an open-cast mine on sand). Bulletin of Polesie State University. Natural Sciences Series 2, 3–7 (in Russian).

Hennekens, S.M., Schaminée, J.H.J., 2001. Turboveg, a comprehensive database management system for vegetation data. Journal of Vegetation Science 12, 589–591.

Lavrenko, E.M., Korchagin, A.G., 1976. Field geobotany. The structure of plant communities 5. Nauka, Leningrad, 320 pp. (in Russian).

Lukash, O., Danko, H., 2020. The vegetation of sands in the Сhernihiv city (Ukraine). Studia Quaternaria 37 (1), 31–44.

Lukash, O., Yakovenko, O., Miroshnyk, I., 2018. The mechanical degradation of land surface and the present state of the loess “islands” plant cover of Chernihiv Polesie (Ukraine). Ecological Questions 29 (4), 23–34.

Marynych, A.M., Parkhomenko, H.O., Petrenko, O.M., Shyshenko, P.H., 2003. Improved scheme of physical and geographical zoning of Ukraine. Ukrainian Geographic Journal 1 (41), 21–32 (in Ukrainian).

Matuszkiewicz, W., 2019. Guide to the determination of Polish plant communities (Przewodnik do oznaczania zbiorowisk roślinnych Polski). Wydawnictwo Naukowe PWN, Warszawa, 404 pp. (in Polish).

Mucina, L., Brandes, D., 1985. Communities of Berteroa incana in Europe and their geographical differentiation. Vegetatio 59, 125–136.

Mucina, L., Büultmann, H., Dierßen, K., Theurillat, J.-P., Raus, T., Čarni, A., Šumberová, K., Willner, W., Dengler, J., García, R.G., Chytrý, M., Hájek, M., Di Pietro, R., Iakushenko, D., Pallas, J., Daniёls, F.J.A., Bergmeier, E., Guerra, A.S., Ermakov, N., Valachovič, M., Schaminće, J. H.J., Lysenko, T., Didukh, Y.P., Pignatti, S., Rodwell, J.S., Capelo, J., Weber, H.E., Solomeshch, A., Dimopoulos, P., Aguiar, C., Hennekens, S.M., Tichý, L., 2016. Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science 19 (S1), 3–264.

Solomakha, V.A., Kostylov, O.V., Sheliah-Sosonko, Yu.R., 1992. Synanthropic vegetation of Ukraine. Naukova dumka, Kyiv, 250 pp. (in Ukrainian).

Stefanic, E., Puskadija, Z, Stefanic, I., Bubalo, D., 2003. Goldenrod: A valuable plant for beekeeping in north-eastern Croatia. Bee World 84, 88–92.

Tichy, L., 2002. JUICE, software for vegetation classification, Journal of Vegetation Science 13, 451–453.
Go to article

Authors and Affiliations

Hanna Danko
1
Oleksandr Lukash
1
Iryna Morozova
1
Volodymyr Boiko
1
Oleksandr Yakovenko
1

  1. T.H. Shevchenko National University “Chernihiv Colehium” Hetman Polubotok Str. 53, 14013 Chernihiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

In spite of modern trends in the development of the eastern Polesye flora, the relict have been preserved in the aquatic ecotopes of Europe, including eastern Polesye. The paper highlights the peculiarities of the distribution in the region of three aquatic Tertiary relics preserved by the Bern Convention. According to the results of a field research, the degree of a modern rarity of the aquatic relict species in eastern Polesye was established, in particular, a very rare species ( Aldrovanda vesiculosa), a moderately rare species ( Trapa natans) and a relatively rare species ( Salvinia natans). The current distribution of these relict species in the region has been positively affected by the increase in the values of maximum temperatures and isotherms of the summer months. A negative impact is made by the abrupt changes in the hydrological regime and the growth of anthropogenic eutrophication of reservoirs. Aldrovanda vesiculosa eliminates with minor changes in living conditions; Salvinia natans is the most tolerant to anthropogenic factors, but shows annual fluctuations in numbers; Trapa natans is stable distributed and has a tendency to expanding of its populations. The relics are the dominants of the Salvinio–Spirodeletum (polyrrhizae), Lemno–Utricularietum vulgaris, Spirodelo– Aldrovandetum vesiculosae, Trapetum natantis and Trapо–Nymphoidetum (peltatae) communities.
Go to article

Bibliography

Berta, J., 1961. Beitrag zur Ökologie und Verbreitung von Aldrovanda vesiculosa L. Biológia 16, 561–573.

Convention on the Conservation of European Wildlife and Natural Habitats, 1979, Bern, 89 pp.

Cross, A., Adamec, L., 2020. Aldrovanda vesiculosa. The IUCN Red List of Threatened Species 2020, https://dx.doi.org/10.2305/IUCN.UK.2020-1.RLTS.T162346A83998419.en.

Dubyna, D.V., 2006. Higher aquatic vegetation. Lemnetea, Potametea, Ruppietea, Zosteretea, Isoёto-Littorelletea (Eleocharicion acicularis, Isoёtion lacustris, Potamion graminei, Sphagno-Utricularion), Phragmito-Magnocaricetea (Glycerio-Sparganion, Oenanthion aquaticae, Phragmition communis, Scirpion maritimi). In: Shelyag-Sosonko, Yu.R. (Ed.), Phytosociocentre, Kyiv, 412 pp. (in Ukrainian).

Dubyna, D.V., Stoyko, S.M., Tasenkevich, L.A., Shelyag-Sosonko, Yu.R., Groudova, E., Gusak, Sh., Otyagelova, G., Erzhabkova, O., 1993. Macrophytes are indicators of changes in the natural environment. In: Sytnik, K.M., Geyny, S. (Eds), Naukova dumka, Kyiv, 436 pp. (in Russian).

Kamiński, R., 1987. Studies on the ecology of Aldrovanda vesiculosa L. I. Ecological differentiation of A. vesiculosa population under the influence of chemical factors in the habitat. Ekologia Polska 35, 559–590.

Kamiński, R., 2006. Restitution of the waterwheel plant (Aldrovanda vesiculosa L.) in Poland and determining the factors of its survival under a temperate climate (Restytucja Aldrovandy pęcherzykowatej (Aldrovanda vesiculosa L.) w Polsce i rozpoznanie czynników, decydujących o jej przetrwaniu w klimacie umiarkowanym). Wydawnictwo Uniwersytetu Wrocławskiego, Wrocław, 105 pp. (in Polish).

Korchagin, A.A., 1976. Field geobotany. In: Lavrenko, E.M. (Ed.), Methodical guidance. Vol. 5. PH AS USSR, Moscow, 320 pp. (in Russian).

Lukash, O., 2007. Distribution, cenotic characteristic and protection of habitats of plants of the Bern Convention in eastern Polesye. Thaiszia – Journal of Botany 17, 33–58.

Lukash, O.V., 2008. The flora of the Eastern Polissia vascular plants: the history of the study, summary. Phytosociocentre, Кyiv, 436 pp. (in Ukrainian).

Lukash, O.V., 2009. The flora of the Eastern Polissia vascular plants: the structure and dynamics Phytosociocentre, Кyiv, 200 pp. (in Ukrainian).

Lukash, O.V., Rak, O.O., 2008. Salvinia natans (L.) All. in eastern Polesye. Plant introduction 1, 38–43 (in Ukrainian).

Lukash, O., Kirvel, I., 2018. The geographical structure of the flora of the eastern Polesye vascular plants. Słupskie prace geograficzne 15, 5–17.

Marković, G.S., Vićentijević-marković, G.S., Tanasković, S.T., 2015. First Record of Water Chestnut (Trapa natans L., Trapaceae, Myrtales) in Central Serbia. Journal of Central European Agriculture 16(4), 436–444.

Meusel, H., Jäger, E., Weinert, E., 1965. Vergleichende Chorologie der zentraleuropäischen Flora. I. Fischer, Jena, 583 pp.

Mucina, L., Büultmann, H., Dierßen, K., Theurillat, J.-P., Raus, T., Čarni, A., Šumberová, K., Willner, W., Dengler, J., García, R.G., Chytrý, M., Hájek, M., Di Pietro, R., Iakushenko, D., Pallas, J., Daniёls, F.J.A., Bergmeier, E., Guerra, A.S., Ermakov, N., Valachovič, M., Schaminće, J. H.J., Lysenko, T., Didukh, Y.P., Pignatti, S., Rodwell, J.S., Capelo, J., Webe,r H.E., Solomeshch, A., Dimopoulos, P., Aguiar, C., Hennekens, S.M., Tichý, L., 2016. Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science 19 (S1), 3–264.

Rothmaler, W., Schubert, R., Went, W., 1986. Exkursionsflora für die Gebiete der DDR und der BRD. Band. 4, Kritischer Band. Volk und Wissen Volkseigener Verlag, Berlin, 811 pp.

Săndulescu, E.B., Scăeţeanu, G.V., Şchiopu, T., Oltenacu, N., M. Stavrescu-Bedivan, M.-M., 2016. Morpho-anatomy and adaptation to some Romanian aquatic environments of Nymphoides peltata (Gmel.) O. Kuntze (Asterales: Menyanthaceae). Scientific Papers. Series A. Agronomy 59, 537–542.

Saksonov, S.V., Senator, S.A., Koneva, N.V., 2011. Classification of relic plants of the central part of the Volga upland. Bulletin of the Samara Scientific Center of the Russian Academy of Sciences 13 (5), 64–67 (in Russian).

The Plant List (2013). Version 1.1. Published on the Internet; http://www.theplantlist.org/

Wamelink, G.W.W, Goedhart, P.W, Frissel, J.Y., 2014. Why Some Plant Species Are Rare. PLoS ONE 9(7): e102674, https://doi.org/10.1371/journal.pone.0102674.
Go to article

Authors and Affiliations

Oleksandr Lukash
1
Iryna Miroshnyk
1
Svitlana Strilets
1
Oleksandr Rak
2
Olena Sazonova
1

  1. T.H. Shevchenko National University “Chernihiv Colehium”, 53, Hetman Polubotko Str., Chernihiv, 14013, Ukraine
  2. M.M. Gryshko National Botanical Garden of the National Academy of Sciences of Ukraine; 1, Timiriazievska Str., 1, Kyiv, 01014, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

This study is aimed to report and analyze the modern plants use in the historical rural localities of Chernihiv Polesie (Ukraine). The research materials were collected in two stages. At the first stage the main useful of the local natural flora were identified. At the second stage a sociological survey of adult local inhabitants on the plants use was conducted. The main groups of useful plants of the historical localities were established. The modern use of plants was analyzed. It was found that most plants were used by the local inhabitants for their own needs. However, certain edible, fodder and techniacal plants are a source of income for the local inhabitants. In the historical localities of Chernihiv Polesie all the traditional for the region ways of using the natural flora plants have been preserved (but to varying degrees). The degree of modern use of plants is primarily determined by the peculiarities of the vegetation (in particular, the predominance of pine, mixed forests and floodplain meadows) and financial incentives. This primarily applies to Vaccinium myrtillus gathering and laying hay in for the own use and sale. The local inhabitants use the plant resources lesser than the existining resource potential.
Go to article

Authors and Affiliations

Oleksandr Lukash
1
Svitlana Strilets
1
Iryna Miroshnyk
1
Olena Sazonova
1

  1. T.H. Shevchenko National University “Chernihiv Colehium” Hetman Polubotok Str. 53, 14013 Chernihiv,Ukraine

This page uses 'cookies'. Learn more