Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

How environmental conditions influence current distributions of organisms at the local scale in sensitive High Arctic freshwaters is essential to understand in order to better comprehend the cascading consequences of the ongoing climate change. This knowledge is also important background data for paleolimnological assessments of long-Term limnoecological changes and in describing the range of environmental variability. We sampled five limnologically different freshwater sites from the Fuglebergsletta marine terrace in Hornsund, southern Svalbard, for aquatic invertebrates. Invertebrate communities were tested against non-climatic environmental drivers as limnological and catchment variables. A clear separation in the communities between the sites was observed. The largest and deepest lake was characterized by a diverse Chironomidae community but Cladocera were absent. In a pond with marine influence, crustaceans, such as Ostracoda, Amphipoda, and calanoid Copepoda were the most abundant invertebrates. Two nutrient-rich ponds were dominated by a chironomid, Orthocladius consobrinus, whereas themost eutrophic pond was dominated by the cladoceran Daphnia pulex, suggesting decreasing diversity along with the trophic status. Overall, nutrient related variables appeared to have an important influence on the invertebrate community composition and diversity, the trophic state of the sites being linked with their exposure to geese guano. Other segregating variables included water color, presence/absence of fish, abundance of aquatic vegetation and lake depth. These results suggest that since most of these variables are climate-driven at a larger scale, the impacts of the ongoing climate change will have cumulative effects on aquatic ecosystems.
Go to article

Authors and Affiliations

Tomi P. Luoto
Mimmi Oksman
Antti E.K. Ojala
Download PDF Download RIS Download Bibtex

Abstract

The sedimentary environment, sediment characteristics and age−depth models of sediment sequences from Arctic lakes Revvatnet and Svartvatnet, located near the Polish Polar Station in Hornsund, southern Svalbard (77 ° N), were studied with a view to establishing a basis for paleolimnological climate and environmental reconstructions. The results indicate that catchment−to−lake hydroclimatic processes probably affect the transportation, distribution and accumulation of sediments in different parts of lakes Revvatnet and Svartvatnet. Locations with continuous and essentially stable sedimentary environments were found in both lakes between water depths of 9 and 26 m. We used several different dating techniques, including 137 Cs, 210 Pb, AMS 14 C, and paleomagnetic dating, to provide accurate and secured sediment chronologies. A recovered sequence from the northern basin of Revvatnet spans more than one thousand years long with laminated stratigraphy in the upper part of the sediment. Based on AMS 14 C dates, it is possible to suppose that Revvatnet basin was not occupied by a valley glacier during the Little Ice Age. The dates were supported by 137 Cs chronologies, but not confirmed with other independent dating methods that extent beyond the last 50 years. A sedimentary sequence from the northern basin of Svartvatnet provides a potential archive for the study of climate and environmental change for the last ca. 5000 years. Based on the stratigraphy and a Bayesian age−depth model of AMS 14 C and paleosecular variation (PSV) dates, the recovered sediment sections represent a continuous and stable sedimentation for the latter half of the Holocene.
Go to article

Authors and Affiliations

Marek Zajączkowski
Antti E.K. Ojala
Laura Arppe
Tomi P. Luoto
Lukas Wacker
Eija Kurki
Joanna Pawłowska
Mateusz Damrat
Mimmi Oksman
Download PDF Download RIS Download Bibtex

Abstract

Analyses of subfossil cladocerans (Crustacea: Cladocera) and chironomids (Diptera: Chironomidae) were applied to examine water-level changes in a small and oligotrophic lake in southern Finland over the past 2000 years. Major changes in the invertebrate communities occurred ca. 400 AD onwards when the littoral cladoceran Alonella nana started to replace the planktonic Eubosmina as the dominant species and chironomids Psectrocladius sordidellus group and Zalutschia zalutschicola increased. These changes were most likely due to a decreasing water level and an enlarging proportion of the littoral area, providing suitable vegetative habitats, e.g. aquatic bryophytes (mosses), for these taxa. The lowering water level reached its minimum just before the Medieval Warm Period, ca. 800-1000 AD, after which the lake level rose again and remained high until modern times. A prominent change in the chironomid assemblages occurred during the 20th century when Ablabesmyia monilis and Chironomus anthracinus type increased, presumably due to changes in water chemistry, caused by anthropogenic load of pollutants.

Go to article

Authors and Affiliations

Liisa Nevalainen
Tomi P. Luoto
Kaarina Sarmaja- Korjonen
Download PDF Download RIS Download Bibtex

Abstract

Independent Arctic records of temperature and precipitation from the same proxy archives are rare. Nevertheless, they are important for providing detailed information on long-term climate changes and temperature-precipitation relationships in the context of large-scale atmospheric dynamics. Here, we used chironomid and cladoceran fossil assemblages to reconstruct summer air- temperature and water-level changes, during the past 400 years, in a small lake located in Finnish Lapland. Temperatures remained persistently cold over the Little Ice Age (LIA), but increased in the 20th century. After a cooler phase in the 1970s, the climate rapidly warmed to the record-high temperatures of the most recent decades. The lake-level reconstruction suggested persistently wet conditions for the LIA, followed by a dry period between ~1910 and 1970 CE, when the lake apparently became almost dry. Since the 1980s, the lake level has returned to a similar position as during the LIA. The temperature development was consistent with earlier records, but a significant local feature was found in the lake-level reconstruction – the LIA appears to have been continuously wet, without the generally depicted dry phase during the 18th and 19th centuries. Therefore, the results suggest local precipitation patterns and enforce the concept of spatially divergent LIA conditions.

Go to article

Authors and Affiliations

Tomi P. Luoto
E. Henriikka Kivilä
Bartosz Kotrys
Mateusz Płóciennik
Marttiina V. Rantala
Liisa Nevalainen

This page uses 'cookies'. Learn more