Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study aims to determine the potential of Kebar grass extract in reducing the impact of liver damage in mice offspring ( Mus musculus) from parent exposed to carbofuran during lactation period. 42 lactation mice ( Mus musculus) used in the study were divided into seven groups, each group consisting of six mice. Carbofuran, Kebar grass extract, and vitamin C are administered orally on days 1 to 14 after birth. This group consisted of K (aquadest), P1 (carbofuran 1/4 LD50 0.0125 mg/day), P2 (carbofuran 1/8 LD50 0.00625 mg/day), P3 (Kebar grass extract 3.375 mg (0.2 ml) + carbofuran 1/4 LD50), P4 (Kebar grass extract 3.375 mg (0.2 ml) + carbofuran 1/8 LD50), P5 (vitamin C 5 mg (0.2 ml) + carbofuran 1/4 LD50), and P6 (vitamin C 5 mg (0.2 ml) + carbofuran 1/8 LD50). On the 15th day after birth, mice were sacrified and their liver taken for microscopic examination with hematoxilin and eosin staining. The scoring data were analyzed using Kruskal-Wallis and Mann-Whitney test. The result showed significant different (p<0.05) among the treatment groups. Mean of P4 in degeration is (1.13), necrosis (1.13) and inflamation (0.73), while the mean of P6 in degeneration is (2.20), necrosis (2.73) and inflamation (1.93). The conclusion of this research is giving Kebar grass extract is more effective in reducing degeneration, necrosis and inflammatory cell’s infiltration than vitamin C in in mice offspring ( Mus musculus) from parent exposed to carbofuran during lactation period.
Go to article

Bibliography


Addor FA (2017) Antioxidants in dermatology. An Bras Dermatol 92: 356-362.

Arimbi A, Azmijah, Darsono R, Plumerriastuti H, Widiyatno TV, Legowo D (2015) Veterinary general pathology textbook. 2nd ed., Airlang-ga University Press, Surabaya.

Chandra D, Tripathi UN, Srivastava S, Amit Swaroop A (2011) Carbofuran induced biochemical toxicity in mice; Protective role of Momor-dica charantia. Eur J Exp Biol 1: 106-112.

Chin AM, Hill DR, Aurora M, Spence JR (2017) Morphogenenis and maturation of embryonic and postnatal intestine. Semin Cell Dev Biol 66: 81-93.

Gbadegesin MA, Owumi SE, Akinseye V, Odunola OA (2013) Evaluation of hepatotoxicity and clastogenicity of carbofuran in male Wistar rats. Food Chem Toxicol 5: 115-119.

Gibson J (2003) Modern physiology and anatomy for nurses. 2nd ed., Jakarta, EGC Press.

Gupta RC (1994) Carbofuran Toxicity. J Toxicol Environ Health 43: 383-418.

Jaiswal SK, Siddiqi NJ, Sharma B (2013) Carbofuran induced oxidative stress in rat heart: Ameliorative effect of vitamin C. ISRN Oxid Med: 11: 1-10.

Kaur M, Sandhir R (2006) Comparative effects of acute and chronic carbofuran exposure on oxidative stress and drug-metabolizing enzymes in liver. Drug Chem Toxicol 29: 415-421.

Keegan J, Whelan M, Danaher M, Crooks S, Sayers R, Anastasio A, Elliott C, Brandon D, Furey A, O’Kennedy R (2009) Bensimidazole carbamate residues in milk: Detection by Surface Plasmon Resonance-biosensor, using a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method for extraction. Anal Chim Acta 654: 111-119.

Luqman EM, Sudiana, IK, Darmanto W, Achmad AB, Widjiati (2019) Mouse (Mus musculus) embryonic cerebral cortex cell death caused by carbofuran insecticide exposure. J Vet Res 63: 413-421.

Maslachah L, Sugihartuti R, Kurniasanti R (2008) The inhibition of vitamin E (α- tocopherol) antioxidant to superoxide radical reactive oxygen species (O2-) production on the white rat (Rattus norvegicus) stressed by an electric shock. Vet J 24: 22- 26.

Otieno PO, Lalah JO, Virani M, Jondiko IO, Schram KW (2010) Carbofuran and its toxic metabolites provide forensic evidence for furadan exposure in vultures (Gyps africanus) In Kenya. Bull Environ Contam Toxicol 84: 536-544.

Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5: 1-15.

Prior RL, Cao G (2000) Antioxidant phytochemicals in fruits and vegetables; diet and health implications. Hortic Sci 35: 588-592.

Rai DK, Rai PK, Rizvi SI, Watal G, Sharma B (2009) Carbofuran-induced toxicity in rats: protective role of vitamin C. Exp Toxicol Pathol 61: 531-535.

Sayuti K, Rina Y (2015) Natural and synthetic antioxidants. 1st ed., Andalas University Press, Padang.

Trisetiyono Y, Pramono N, Hidayat ST, Widjiati (2019) The differences of malondialdehyde serum level, expression of tumor necrosis factor alpha and vascular endothelial growth factor, and the area of endometriotic implants in administration of Kebar grass extract (Biophytum peter-sianum) and green tea extract (Camelia sinensis) to mice. Trad Med J 24: 169-177.

Unitly AJA, Inara C (2011) Potential of kebar grass (Biophytum Petersianum Klotzsch) in improving reproductive performance. Proceedings of the National Seminar Universitas Patimura, Ambon, Indonesia, pp 329-333.
Go to article

Authors and Affiliations

N.A. Yulitasari
1
S. Hidanah
1
Widjiati
1
V.F. Hendrawan
2
E.M. Luqman
1

  1. Department of Veterinary Science Faculty of Veterinary Medicine Universitas Airlangga Kampus C Unair, Jalan Mulyorejo Surabaya 60115 Indonesia
  2. Department of Animal Reproduction Faculty of Veterinary Medicine, Universitas Brawijaya, Jl. MT. Haryono No.169, Ketawanggede, Lowokwaru, Kota Malang, 65144 Indonesia
Download PDF Download RIS Download Bibtex

Abstract

The process of vitrification of the cumulus-oocyte complex (COCs) often results in cold shock. When warming, heat shock occurs which can disrupt the balance of intracellular calcium (Ca2+) intensity. Drastic changes in temperature cause Reactive Oxygen Species (ROS), affecting changes on Ca2+ in COCs. The role of calcium is needed for oocyte activation in the fertilization process. The purpose of this study was to measure the expression of Ca2+ and the intensity of Ca2+ in COCs after vitrification. The study was divided into 2 groups, the control group (C) of fresh COCs, and the treatment group (T) of COCs after vitrification. After vitrification for 24 hours, then thawing, the expression of Ca2+ was examined using the Immunocytochemistry (ICC) method and the intensity of calcium (Ca2+) with a Confocal Laser Scanning Microscope (CLSM). The research data obtained were analyzed statistically by T-Test. The results showed that the expression of Ca2+ in the control group (12.00±0.00) was different from the treatment group (0.35±0.79). The intensity of Ca2+ in the control group (1059.43±489.59) was different from the treatment group (568.21±84.31). The conclusion of this study is that cryopreservation affects calcium in COCs; there were differences in the expression and the intensity of Ca2+ between fresh COCs and COCs after vitrification. Ca2+ intensity of COCs after vitrification was concentrated in the nucleus, while in fresh COCs it was concentrated in the cytoplasm.
Go to article

Bibliography


Barceló-Fimbres M, Seidel GE Jr (2007) Effects of fetal calf serum, phenazine ethosulfate and either glucose or fructose during in vitro culture of bovine embryos on embryonic development after cryopreservation. Mol Reprod Dev 74: 1395-1405.
Bonte D, Thys V, de Sutter P, Boel A, Leybaert L, Heindryckx B (2020) Vitrification negatively affects the Ca2+ releasing and activation potential of mouse oocytes, but vitrified oocytes are potentially useful for diagnostic purposes. Reprod Biomed Online 40: 13-25.
Borges E Jr, Braga DP, de Sousa Bonetti TC, Iaconelli A Jr, Franco JG Jr (2009) Artificial oocyte activation using calcium ionophore in ICSI cycles with spermatozoa from different sources. Reprod BioMed Online 18: 45-52.
Chen SU, Yang YS (2009) Slow freezing or vitrification of oocytes: their effects on survival and meiotic spindles, and the time schedule for clinical practice. Taiwan J Obstet Gynecol 48: 15-22.
Cheon B, Lee HC, Wakaii T,Fissore RA (2013) Ca2+ influx and the store-operated Ca2+ entry pathway undergo regulation during mouse oocyte maturation. Mol Biol Cell 24: 1396-1410.
Chithiwala ZH, Lee HC, Hill DL, Jellerette-Nolan T, Fissore R, Grow D, Dumesic DA (2015) Phospholipase C-zeta deficiency as a cause for repetitive oocyte fertilization failure during ovarian stimulation for in vitro fertilization with ICSI: a case report. J Assist Reprod Genet 32: 1415-1419.
Daddangadi A, Uppangala S, Kalthur G, Talevi R, Adiga SK (2020) Germinal stage vitrification is superior to MII stage vitrification in prepubertal mouse oocytes. Cryobiology 93: 49-55.
De Munck N, Vajta G (2017) Safety and efficiency of oocyte vitrification. Cryobiology 78: 119-127.
Favetta V, Colombo RC, Júnior JFM, de Faria RT (2017) Light sources and culture media in the in vitro growth of the Brazilian orchid Microlaelia lundii. Semin Cienc Agrar 38: 1775-1783.
Fraser LR (1982) Ca2+ is required for mouse sperm capacitation and fertilization in vitro. J Androl 3: 412-419.
Gómez-Fernández C, López-Guerrero AM, Pozo-Guisado E, Álvarez IS, Martín-Romero FJ (2012) Calcium signaling in mouse oocyte maturation: the roles of STIM1, ORAI1 and SOCE. Mol Hum Reprod 18: 194-203.
Jang TH, Park SC, Yang JH, Kim JY, Seok JH, Park US, Choi CW, Lee SR, Han J (2017) Cryopreservation and Its clinical applications. Integr Med Res 6: 12-18.
Kang HJ, Lee SH, Park YS, Lim CK, Ko DS, Yang KM, Park DW (2015) Artificial oocyte activation in intracytoplasmic sperm injection cycles using testicular sperm in human in vitro fertilization. Clin Exp Reprod Med 42: 45-50.
Karabulut S, Aksünger Ö, Ata C, Sağıroglu Y, Keskin I (2018) Artificial oocyte activation with calcium ionophore for frozen sperm cycles. Syst Biol Reprod Med 64: 381-388.
Kasai M, Mukaida T (2004) Cryopreservation of animal and human embryos by vitrification. Reprod Biomed Online 9: 164-170
Leibo SP (2008) Cryopreservation of oocytes and embryos: optimization by theoretical versus empirical analysis. Theriogenology 69: 37-47.
Marques CC, Santos-Silva C, Rodrigues C, Matos JE, Moura T, Baptista MC, Horta AEM, Bessa RJB, Alves SP, Soveral G, Pereira RMLN (2018) Bovine oocyte membrane permeability and cryosurvival: Effects of different cryoprotectants and calcium in the vitrification media. Cryobiology 81: 4-11.
Mukaida T, Takahashi K, Kasai M (2002) Blastocyst cryopreservation: ultrarapid vitrification using cryoloop technique. Reprod BioMed Online 6: 221-225.
Nowak M, Madej JA, Dziegeil P (2007) Intensity of COX2 expression in cells of soft tissue fibrosacrcomas in dogs as related to grade of tumour malignancy. Bull Vet Inst Pulawy 51: 275-279.
Orief Y, Schultze-Mosgau A, Dafopoulos K, Al-Hasani S (2005) Vitrification: Will it replace the conventional gamete cryopreservation techniques? Middle East Fertil Soc 10: 171-184.
Rahman ANA, Abdullah R, Embong WK (2007) Goat embryo development from in vitro matured oocytes of heterogeneous quality through intracytoplasmic sperm injection technique. Biotechnol 6: 373-382.
Ramadan WM, Kashir J, Jones C, Coward K (2012) Oocyte activation and phospholipase C zeta (PLCζ): diagnostic and therapeutic implications for assisted reproductive technology. Cell Commum Signal 10: 1-20.
Rienzi L, Gracia C, Maggiulli R, LaBarbera AR, Kaser DJ, Ubaldi FM, Vanderpoel S, Racowsky C (2017) Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update 23: 139-155.
Roth GA, Abate D, Abate KH, Abay SM, Abbafati C, Abbasi N (2018) Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the global burden of disease study 2017. Lancet 392: 1736-1788.
Sanaei B, Movaghar B, Valojerdi MR, Ebrahimi B, Bazrgar M, Jafarpour F, Nasr-Esfahani MH (2018) An improved method for vitrification of in vitro matured ovine oocytes; beneficial effects of ethylene glycol tetraacetic acid, an intracellular calcium chelator. Cryobiology 84: 82-90.
Stachecki JJ, Cohen J (2004) An overview of oocyte cryopreservation. Reprod Biomed Online 9: 152-163.
Wang C, Machaty Z (2013) Calcium influx in mammalian eggs. Reproduction 145: R97-R105.
Wang F, Yuan RY, Li L, Meng TG, Fan LH, Jing Y, Zhang RR, Li YY, Liang QX, Dong F, Hou Y, Schatten H, Sun QY, Ou XH (2018) Mitochondrial regulation of [Ca2+]i oscillations during cell cycle resumption of the second meiosis of oocyte. Cell Cycle 17: 1471-1486.
Widjiati W, Aulanni’am A, Hendrawan VF (2017) The effect of vitrification of oocytes cumulus complex apoptosis of mice (Mus musculus) to apoptosis, rate of fertilization and embryo quality. Int J Pharm Clin Res 9: 179-182
Widjiati W, Boediono A, Sumitro SB, Hinting A, Aulani’am, Susilowati T (2012) Isolation and identification of transforming growth factor β from in vitro matured cumulus oocyte complexes. Hayati J Biosci 19: 6-10.
Go to article

Authors and Affiliations

W. Widjiati
1
Z. Faizah
2
N. Darsini
2
V.F. Hendrawan
3
H.N. Karima
4
C. Chotimah
4
S.B. Sumitro
5
L.R. Yustinasari
6
A.A.M.N. Kasman
7
J.M. Ntoruru
8
E.M. Luqman
6

  1. Post Graduate School of Universitas Airlangga Surabaya, Indonesia
  2. Department of Biomedical Science, Faculty of Medicine Universitas Airlangga Surabaya, Indonesia
  3. Department of Reproduction, Faculty of Veterinary Medicine, Universitas Brawijaya Malang, Indonesia
  4. Bio-Science Central Laboratory, Universitas Brawijaya Malang, Indonesia
  5. Department of Biology, Faculty of Science, Universitas Brawijaya Malang, Indonesia
  6. Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga Surabaya, Indonesia
  7. Faculty of Health Science, Universitas Muhammadiyah Mataram, Mataram, Indonesia
  8. Research Assistant, Meru University, Kenya

This page uses 'cookies'. Learn more