Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In recent, modeling practical systems as interval systems is gaining more attention of control researchers due to various advantages of interval systems. This research work presents a new approach for reducing the high-order continuous interval system (HOCIS) utilizing improved Gamma approximation. The denominator polynomial of reduced-order continuous interval model (ROCIM) is obtained using modified Routh table, while the numerator polynomial is derived using Gamma parameters. The distinctive features of this approach are: (i) It always generates a stable model for stable HOCIS in contrast to other recent existing techniques; (ii) It always produces interval models for interval systems in contrast to other relevant methods, and, (iii) The proposed technique can be applied to any system in opposite to some existing techniques which are applicable to second-order and third-order systems only. The accuracy and effectiveness of the proposed method are demonstrated by considering test cases of single-inputsingle- output (SISO) and multi-input-multi-output (MIMO) continuous interval systems. The robust stability analysis for ROCIM is also presented to support the effectiveness of proposed technique.
Go to article

Bibliography

[1] A.S.S. Abadi, P.A. Hosseinabadi, S.Mekhilef and A. Ordys: A new strongly predefined time sliding mode controller for a class of cascade high-order nonlinear systems. Archives of Control Sciences, 30(3), (2020), 599–620, DOI: 10.24425/acs.2020.134679.
[2] A. Gupta, R. Saini, and M. Sharma: Modelling of hybrid energy system— part i: Problem formulation and model development. Renewable Energy, 36(2), (2011), 459–465, DOI: 10.1016/j.renene.2010.06.035.
[3] S. Singh, V. Singh, and V. Singh: Analytic hierarchy process based approximation of high-order continuous systems using tlbo algorithm. International Journal of Dynamics and Control, 7(1), (2019), 53–60, DOI: 10.1504/IJSCC.2020.105393.
[4] J. Hu, Y. Yang, M. Jia, Y. Guan, C. Fu, and S. Liao: Research on harmonic torque reduction strategy for integrated electric drive system in pure electric vehicle. Electronics, 9(8), (2020), DOI: 10.3390/electronics9081241.
[5] K. Takahashi, N. Jargalsaikhan, S. Rangarajan, A. M. Hemeida, H. Takahashi and T. Senjyu: Output control of three-axis pmsg wind turbine considering torsional vibration using h infinity control. Energies, 13(13), (2020), DOI: 10.3390/en13133474.
[6] V. Singh, D.P.S. Chauhan, S.P. Singh, and T. Prakash: On time moments and markov parameters of continuous interval systems. Journal of Circuits, Systems and Computers, 26(3), (2017), DOI: 10.1142/S0218126617500384.
[7] B. Pariyar and R.Wagle: Mathematical modeling of isolated wind-dieselsolar photo voltaic hybrid power system for load frequency control. arXiv preprint arXiv:2004.05616, (2020).
[8] N. Karkar, K. Benmhammed, and A. Bartil: Parameter estimation of planar robot manipulator using interval arithmetic approach. Arabian Journal for Science and Engineering, 39(6), (2014), 5289–5295, DOI: 10.1007/s13369-014-1199-z.
[9] F.P.G. Marquez: A new method for maintenance management employing principal component analysis. Structural Durability & Health Monitoring, 6(2), (2010), DOI: 10.3970/sdhm.2010.006.089.
[10] F.P.G. Marquez: An approach to remote condition monitoring systems management. IET International Conference on Railway Condition Monitoring, (2006), 156–160, DOI: 10.1049/ic:20060061.
[11] D. Li, S. Zhang, andY. Xiao: Interval optimization-based optimal design of distributed energy resource systems under uncertainties. Energies, 13(13), (2020), DOI: 10.3390/en13133465.
[12] A.K. Choudhary and S.K. Nagar: Order reduction in z-domain for interval system using an arithmetic operator. Circuits, Systems, and Signal Processing, 38(3), (2019), 1023–1038, DOI: 10.1007/s00034-018-0912-7.
[13] A.K. Choudhary and S.K. Nagar: Order reduction techniques via routh approximation: a critical survey. IETE Journal of Research, 65(3), (2019), 365–379, DOI: 10.1080/03772063.2017.1419836.
[14] V.P. Singh and D. Chandra: Model reduction of discrete interval system using dominant poles retention and direct series expansion method. In 5th International Power Engineering and Optimization Conference, (2011), 27– 30, DOI: 10.1109/PEOCO.2011.5970421.
[15] V. Singh and D. Chandra: Reduction of discrete interval system using clustering of poles with Padé approximation: a computer-aided approach. International Journal of Engineering, Science and Technology, 4(1), (2012), 97–105, DOI: 10.4314/ijest.v4i1.11S.
[16] Y. Dolgin and E. Zeheb: On Routh-Pade model reduction of interval systems. IEEE Transactions on Automatic Control, 48(9), (2003), 1610–1612, DOI: 10.1109/TAC.2003.816999.
[17] S.F. Yang: Comments on “On Routh-Pade model reduction of interval systems”. IEEE Transactions on Automatic Control, 50(2), (2005), 273– 274, DOI: 10.1109/TAC.2004.841885.
[18] Y. Dolgin: Author’s reply [to comments on ‘On Routh-Pade model reduction of interval systems’ . IEEE Transactions on Automatic Control, 50(2), (2005), 274–275, DOI: 10.1109/TAC.2005.843849.
[19] B. Bandyopadhyay, O. Ismail, and R. Gorez: Routh-Pade approximation for interval systems. IEEE Transactions on Automatic Control, 39(12), (1994), 2454–2456, DOI: 10.1109/9.362850.
[20] Y.V. Hote, A.N. Jha, and J.R. Gupta: Reduced order modelling for some class of interval systems. International Journal of Modelling and Simulation, 34(2), (2014), 63–69, DOI: 10.2316/Journal.205.2014.2.205-5785.
[21] B. Bandyopadhyay, A. Upadhye, and O. Ismail: /spl gamma/-/spl delta/routh approximation for interval systems. IEEE Transactions on Automatic Control, 42(8), (1997), 1127–1130, DOI: 10.1109/9.618241.
[22] J. Bokam, V. Singh, and S. Raw: Comments on large scale interval system modelling using routh approximants. Journal of Advanced Research in Dynamical and Control Systems, 9(18), (2017), 1571–1575.
[23] G. Sastry, G.R. Rao, and P.M. Rao: Large scale interval system modelling using Routh approximants. Electronics Letters, 36(8), (2000), 768–769, DOI: 10.1049/el:20000571.
[24] M.S. Kumar and G. Begum: Model order reduction of linear time interval system using stability equation method and a soft computing technique. Advances in Electrical and Electronic Engineering, 14(2), (2016), 153– 161, DOI: 10.15598/aeee.v14i2.1432.
[25] S.R. Potturu and R. Prasad: Qualitative analysis of stable reduced order models for interval systems using mixed methods. IETE Journal of Research, (2018), 1–9, DOI: 10.1080/03772063.2018.1528185.
[26] N. Vijaya Anand, M. Siva Kumar, and R. Srinivasa Rao: A novel reduced order modeling of interval system using soft computing optimization approach. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 232(7), (2018), 879–894, DOI: 10.1177/0959651818766811.
[27] A. Abdelhak and M. Rachik: Model reduction problem of linear discrete systems: Admissibles initial states. Archives of Control Sciences, 29(1), (2019), 41–55, DOI: 10.24425/acs.2019.127522.
[28] M. Buslowicz: Robust stability of a class of uncertain fractional order linear systems with pure delay. Archives of Control Sciences, 25(2), (2015), 177–187.
[29] S.R. Potturu and R. Prasad: Model order reduction of LTI interval systems using differentiation method based on Kharitonov’s theorem. IETE Journal of Research, (2019), 1–17, DOI: 10.1080/03772063.2019.1686663.
[30] E.-H. Dulf: Simplified fractional order controller design algorithm. Mathematics, 7(12), (2019), DOI: 10.3390/math7121166.
[31] Y. Menasria, H. Bouras, and N. Debbache: An interval observer design for uncertain nonlinear systems based on the ts fuzzy model. Archives of Control Sciences, 27(3), (2017), 397–407, DOI: 10.1515/acsc-2017-0025.
[32] A. Khan, W. Xie, L. Zhang, and Ihsanullah: Interval state estimation for linear time-varying (LTV) discrete-time systems subject to component faults and uncertainties. Archives of Control Sciences, 29(2), (2019), 289- 305, DOI: 10.24425/acs.2019.129383.
[33] N. Akram, M. Alam, R. Hussain, A. Ali, S. Muhammad, R. Malik, and A.U. Haq: Passivity preserving model order reduction using the reduce norm method. Electronics, 9(6), (2020), DOI: 10.3390/electronics9060964.
[34] K. Kumar Deveerasetty and S. Nagar: Model order reduction of interval systems using an arithmetic operation. International Journal of Systems Science, (2020), 1–17, DOI: 10.1080/00207721.2020.1746433.
[35] K.K. Deveerasetty,Y. Zhou, S. Kamal, and S.K.Nagar: Computation of impulse-response gramian for interval systems. IETE Journal of Research, (2019), 1–15, DOI: 10.1080/03772063.2019.1690592.
[36] P. Dewangan, V. Singh, and S. Sinha: Improved approximation for SISO and MIMO continuous interval systems ensuring stability. Circuits, Systems, and Signal Processing, (2020), 1–12, DOI: 10.1007/s00034-020-01387-w.
[37] M.S. Kumar, N.V. Anand, and R.S. Rao: Impulse energy approximation of higher-order interval systems using Kharitonov’s polynomials. Transactions of the Institute of Measurement and Control, 38(10), (2016), 1225–1235, DOI: 10.1177/0142331215583326.
[38] S.K. Mangipudi and G. Begum: A new biased model order reduction for higher order interval systems. Advances in Electrical and Electronic Engineering, (2016), DOI: 10.15598/aeee.v14i2.1395.
[39] V.L. Kharitonov: The asymptotic stability of the equilibrium state of a family of systems of linear differential equations. Differentsial’nye Uravneniya, 14(11), (1978), 2086–2088.
[40] M. Sharma, A. Sachan and D. Kumar: Order reduction of higher order interval systems by stability preservation approach. In 2014 International Conference on Power, Control and Embedded Systems (ICPCES), (2014), 1–6.
[41] G. Sastry and P.M. Rao: A new method for modelling of large scale interval systems. IETE Journal of Research, 49(6), (2003), 423–430, DOI: 10.1080/03772063.2003.11416366.



Go to article

Authors and Affiliations

Jagadish Kumar Bokam
1
Vinay Pratap Singh
2
Ramesh Devarapalli
3
ORCID: ORCID
Fausto Pedro García Márquez
4
ORCID: ORCID

  1. Department of Electrical Electronics and Communication Engineering, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam, 530045, Andhra Pradesh, India
  2. Department of Electrical Engineering, Malaviya National Institute of Technology Jaipur, India
  3. Department of Electrical Engineering, BITSindri, Dhanbad, Jharkhand
  4. Ingenium Research Group, University of Castilla-La Mancha, Spain
Download PDF Download RIS Download Bibtex

Abstract

The Bearingless Switched Reluctance Motor (BSRM) is a new technology motor, which overcomes the problems of maintenances required associated with mechanical contacts and lubrication of rotor shaft effectively. In addition, it also improves the output power developed and rated speed. Hence, the BSRM can achieve high output power and super high speed with less size and cost. It has a considerable ripple in the net-torque due to its critical non-linearity and the salient pole structures of both stator and rotor poles. The resultant torque ripple, especially in these motors, causes the more vibrations and acoustic noises will affects the levitated rotor safety also. Practically at high-speed operations, the accurate measurement of the rotor position is complicated for conventional mechanical sensors. A new square currents control with global sliding mode control based sensorless torque observer is proposed to minimize the torque ripple and achieve a smooth, robust operation without using any mechanical sensors. The proposed controller is designed based on the error between the reference and measured torque values. The sliding mode torque observer measures the torque from the actual phase voltages, currents, and look-up tables. The simulation model has been modelled to validate the proposed methodology. From the simulation outputs, it is clear that the reduction of torque ripple by the proposed method shows improved than the conventional sliding mode controller. The overall system is more robust to the external disturbances, and it also gets efficient torque profile.
Go to article

Authors and Affiliations

Pulivarthi Nageswara Rao
1
Ramesh Devarapalli
2
ORCID: ORCID
Fausto Pedro García Márquez
3
ORCID: ORCID
G.V. Nagesh Kumar
4
Behnam Mohammadi-Ivatloo
5

  1. Department of Electrical Electronics and Communication Engineering, Gandhi Institute of Technology and Management (Deemed to be University),Visakhapatnam, 530045, Andhra Pradesh, India
  2. Department of Electrical Engineering, BITSindri, Dhanbad 828123, Jharkhand, India
  3. Ingenium Research Group, University of Castilla-La Mancha, Spain
  4. Department of EEE, JNTU Anantapur, College of Engineering, Pulivendula-516390, Andhra Pradesh, India
  5. University of Tabriz, Tabriz, Iran
Download PDF Download RIS Download Bibtex

Abstract

Economic Load Dispatch (ELD) is utilized in finding the optimal combination of the real power generation that minimizes total generation cost, yet satisfying all equality and inequality constraints. It plays a significant role in planning and operating power systems with several generating stations. For simplicity, the cost function of each generating unit has been approximated by a single quadratic function. ELD is a subproblem of unit commitment and a nonlinear optimization problem. Many soft computing optimization methods have been developed in the recent past to solve ELD problems. In this paper, the most recently developed population-based optimization called the Salp Swarm Algorithm (SSA) has been utilized to solve the ELD problem. The results for the ELD problem have been verified by applying it to a standard 6-generator system with and without due consideration of transmission losses. The finally obtained results using the SSA are compared to that with the Particle Swarm Optimization (PSO) algorithm. It has been observed that the obtained results using the SSA are quite encouraging.
Go to article

Bibliography

[1] Rogers G., Power systems oscillations, Springer Science & Business Media (2012).
[2] Grainger J.J., StevensonW.D., Chang G.W., Power Systems Analysis, Mc Graw Hill Education (2003).
[3] Soft S., Power system economics: designing markets for electricity, Wiley-Interscience, Piscataway, NJ: New York (2002).
[4] Sheta A., Faris H., Braik M., Mirjalil S., Nature-Inspired Metaheuristics Search Algorithms for Solving the Economic Load Dispatch Problem of Power System: A Comparison Study, Applied Nature-Inspired Computing: Algorithms and Case Studies, Springer, pp. 199–230 (2020).
[5] Singht H.P., Singht Brar Y., Koyhari D.P., Reactive power based fair calculation approach for multiobjective load dispatch problem, Archives of Electrical Engineering, vol. 68, no. 4, pp. 719–735 (2019).
[6] Mistri A., Kumar Roy P., Mandal B., Chaotic biogeography-based optimization (CBBO) algorithm applied to economic load dispatch problem, Proceedings of National Conference on Emerging Trends on Sustainable Technology and Engineering Applications (NCETSTEA), Durgapur, India, pp. 1–5 (2020).
[7] Zhang Q., Zou D., Duan N., Shen X., An adaptive differential evolutionary algorithm incorporating multiple mutation strategies for the economic load dispatch problem, Applied Soft Computing, vol. 78, pp. 641–669 (2019).
[8] Singh D., Dhillon J.S., Ameliorated greywolf optimization for economic load dispatch problem, Energy, vol. 169, pp. 398–419 (2019).
[9] Raja M.A.Z., Ahmed U., Zameer A., Kiani A.K., Chaudhary N.I., Bio-inspired heuristics hybrid with sequential quadratic programming and interior-point methods for reliable treatment of economic load dispatch problem, Neutral Computing and Applications, vol. 31, no. S1, pp. 447–475 (2019).
[10] Hr S., Kaboli A., Alqallaf A.K., Solving non-convex economic load dispatch problem via artificial cooperative search algorithm, Expert Systems with Applications, vol. 128, pp. 14–27 (2019).
[11] Al-Betar M.A., Awadallah M.A., Krishan M.M., A non-convex economic load dispatch problem with valve loading effect using a hybrid grey wolf optimizer, Neutral Computing and Applications, vol. 32, pp. 12127–12154 (2020).
[12] Mirjalili S., Gandomi A.H., Mirjalili S.Z., Saremi S., Faris H., Mirjalili S.M., Salp SwarmAlgorithm: A bio-inspired optimizer for engineering design problems, Advances in Engineering Software, vol. 114, pp. 163–191 (2017).
[13] Yang B., Zhonga L., Zhang X., Shua H., Yu T., Li H., Sun L., Novel bio-inspired memetic salp swarm algorithm and application to MPPT for PV systems considering partial shading condition, Journal of Cleaner Production, vol. 215, pp. 1203–1222 (2019).
[14] Ibrahim R.A., Ewees A.A., Oliva D., Abd Elaziz M., Lu S., Improved salp swarm algorithm based on particle swarm optimization for feature selection, Journal of Ambient Intelligence and Humanized Computing, vol. 10, no. 8, pp. 3155–3169 (2019).
[15] Abbassi R., Abbassi A., Heidari A.A., Mirjalili S., An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models, Energy Conversion and Management, vol. 179, pp. 362–372 (2019).
[16] Sayed G.I., Khoriba G., Haggag M.H., A novel chaotic salp swarm algorithm for global optimization and feature selection, Applied Intelligence, vol. 48, no. 10, pp. 3462–3481 (2018).
[17] Faris H., Mafarjab M.M., Heidaric A.A., Aljarah I., Mirjalilid S., Fujitae H., An efficient binary Salp Swarm Algorithm with crossover scheme for feature selection problems, Knowledge-Based Systems, vol. 154, pp. 43–67 (2018).
[18] Hussien A.G., Hassanien A.E., Houssein E.H., Swarming behaviour of salps algorithm for predicting chemical compound activities, Proceedings of International Conference on Intelligent Computing and Information (2017), DOI: 10.1109/INTELCIS.2017.8260072.
[19] Zhang J.,Wang J.S., Improved Salp Swarm Algorithm Based on Levy Flight and Sine Cosine Operator, IEEE Access, vol. 8, pp. 99740–99771 (2020).
[20] Patnana N., Pattnaik S., Varshney T., Singh V., Self-Learning Salp Swarm Optimization Based PID Design of Doha RO Plant, Algorithms, vol. 13, no. 287, pp. 1–14 (2020).
[21] Hussien A.G., Hassanien A.E., Houssein E.H., Swarming behaviour of salps algorithm for predicting chemical compound activities, Proceedings of International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, pp. 315–320 (2017).
[22] Khan I.A., Alghamdi A., Touqeer Ahmed Jumani T.A., Alamgir A., Ahmed Bilal Awan A., Attaullah Khidrani A., Salp SwarmOptimization Algorithm-Based Fractional Order PID Controller for Dynamic Response and Stability Enhancement of an Automatic Voltage Regulator System, Electronics, vol. 8, no. 12, pp. 1–17 (2019).
[23] Mutluer M., Sahman A., Cunkas M., Heuristic optimization based on penalty approach for surface permanent magnet synchronous machines, Arabian Journal for Science and Engineering, vol. 45, pp. 6751–6767 (2020).
[24] Knypinski Ł., Pawełoszek K., Le Manech Y., Optimization of low-power line-start PM motor using gray wolf metaheuristic algorithm, Energies, vol. 13, no. 5 (2020).
[25] Knypinski Ł., J˛edryczka C., Demenko A., Influence of the shape of squirrel cage bars on the dimensions of permanent magnets in an optimized line-start permanent magnet synchronous motor, COMPEL, vol. 36, no. 1, pp. 298–308 (2017).
[26] Kennedy J., Eberhart R., Particle Swarm Optimization, Proceedings of the International Conference on Neutral Networks, Perth, Australia, pp. 1942–1948 (1995).
[27] Freitas D., Guerreiro Lopes L., Morgado-Dias F., Particle Swarm Optimization : A historical review up to the current developments, Entropy, vol. 22, no. 362, pp. 1–36 (2020).
Go to article

Authors and Affiliations

Ramesh Devarapalli
1
ORCID: ORCID
Nikhil Kumar Sinha
1
ORCID: ORCID
Bathina Venkateswara Rao
2
ORCID: ORCID
Łukasz Knypinski
3
ORCID: ORCID
Naraharisetti Jaya Naga Lakshmi
4
ORCID: ORCID
Fausto Pedro García Márquez
5
ORCID: ORCID

  1. Department of EE, B. I. T. Sindri, Dhanbad, Jharkhand – 828123, India
  2. Department of EEE, V R Siddhartha Engineering College (Autonomous), Vijayawada-520007, A.P., India
  3. Poznan University of Technology, Poland
  4. SR Engineering College: Warangal, Telangana, India
  5. Ingenium Research Group, University of Castilla-La Mancha, Spain

This page uses 'cookies'. Learn more