Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The objective of this research is to determine the impact of waves on the segregation of sediment within the area of its supply in the context of meteorological conditions. The research was conducted on a 4 km section of the shore of Calypsostranda (Bellsund, West Spitsbergen), shaped by waves such as swell, wind waves, and tides. Particular attention was paid to the diversity and variability of the surface texture within the intertidal zone. Meteorological measurements, recording of wave climate, as well as analysis of the grain-size distribution of the beach sediments were performed. Nearshore bathymetry, longshore drifts, episodic sediment delivery from land, as well as resistance of the shore to coastal erosion and direction of transport of sediments in the shore zone are important factors controlling shore development. Data show that wind waves contribute to erosion and discharge of material from the nearshore and intertidal zone. The research also shows that oceanic swell, altered by diffraction, reaching the shore of Calypsostranda contributes to better sorting of sediment deposited on the shore through washing it out from among gravels, and longshore transport of its finest fraction. The grain size distribution of shore sediments is significantly changed already during one tidal cycle. The degree of this modification depends not only on wave height and period but on the direction of wave impact. The shore of Calypsostranda can be regarded as transitional between high and low energy coasts.

Go to article

Authors and Affiliations

Piotr Zagórski
Karolina Mędrek
Mateusz Moskalik
Jan Rodzik
Agnieszka Herman
Łukasz Pawłowski
Marek Jaskólski
Download PDF Download RIS Download Bibtex

Abstract

Spitsbergen is the largest island in the Svalbard Archipelago (Norway) that has been permanently populated. The harsh Arctic climate prevents development of large vascular plants such as trees. A two-year aerobiological survey was conducted within the framework of two consecutive polar expeditions (2014 and 2015) in Spitsbergen (Calypsobyen, Bellsund). The air quality was measured continuously from June/July to August using a 7-day volumetric air sampler, Tauber trap and moss specimens. Collected air samples and gravimetric pollen deposits were processed following transfer to sterile laboratory conditions and analyzed with the aid of light microscopy. Days when pine pollen grains were detected in the air were selected for further analysis. Clusters of back-trajectories, computed using the Hybrid Single Particle Lagrangian Integrated Trajectory model in combination with ArcGIS software as well as the Flextra trajectory model, showed the movement of air masses to the sampling location at Hornsund, and thus indicated the likely origin of pollen grains. The GlobCover 2009 and CORINE Land Cover 2012 datasets were employed to establish the distribution of coniferous forests in the areas of interest. Conclusions were drawn based on the analyses of the circulation of air masses, using visualization of global weather conditions forecast to supercomputers. For the first time we have demonstrated that pine pollen grains occurring in pine-free Spitsbergen, could originate from numerous locations, including Scandinavia, Iceland, Siberia and northern Canada. Pollen grains were transported via air masses for distances exceeding ~2000 km. Both air samples and gravimetric pollen deposits revealed the same pattern of Pinus pollen distribution.
Go to article

Authors and Affiliations

Małgorzata Jędryczka
1
ORCID: ORCID
Beata Żuraw
2
ORCID: ORCID
Piotr Zagórski
3
Jan Rodzik
3
Karolina Mędrek
3
Irena Agnieszka Pidek
3
ORCID: ORCID
Weronika Haratym
4
ORCID: ORCID
Joanna Kaczmarek
1
ORCID: ORCID
Magdalena Sadyś
5
ORCID: ORCID

  1. Institute of Plant Genetics, Polish Academy of Science, Strzeszyńska 34, 60-479 Poznań, Poland
  2. Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, Dobrzańskiego 37, 20-295 Lublin, Poland
  3. Institute of Earth and Environmental Sciences, Maria Curie-Skłodowska University, al. Kraśnicka 2D, 20-718 Lublin, Poland
  4. Paderewski Private Grammar School, Symfoniczna 1, 20-853 Lublin, Poland
  5. Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK

This page uses 'cookies'. Learn more