Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Mg-0.5Si-xSn (x=0.95, 2.9, 5.02wt.%) alloys were cast and extruded at 593K (320 o C) with an extrusion ratio of 25. The microstructure and mechanical properties of as-cast and extruded test alloys were investigated by OM, SEM, XRD and tensile tests. The experimental results indicate that the microstructure of the Mg-0.5Si-xSn alloys consists of primary α-Mg dendrites and an interdendritic eutectic containing α-Mg, Mg2Si and Mg2Sn. There is no coarse primary Mg2Si phase in the test alloys due to low Si content. With the increase in the Sn content, the Mg2Si phase was refined. The shape of Mg2Si phase was changed from branch to short bar, and the size of them were reduced. The ultimate tensile strength and yield strength of Mg-0.52Si-2.9Sn alloy at the temperature of 473K (200 o C) reach 133MPa and 112MPa respectively. Refined eutectic Mg2Si phase and dispersed Mg2Sn phase with good elevated temperature stability are beneficial to improve the elevated temperature performance of the alloys. However, with the excess addition of Sn, large block-like Mg2Sn appears around the grain boundary leading to lower mechanical properties.

Go to article

Authors and Affiliations

Xuesong Fu
Yan Yang
QuanYang Ma
Xiaodong Peng
Tiancai Xu
Download PDF Download RIS Download Bibtex

Abstract

In this paper, crushability of foundry sand particles was studied. Three kinds of in-service silica sands in foundry enterprises selected as the study object, and foundry sand particles were subjected to mechanical load and thermal load during service were analyzed. A set of methods for simulating mechanical load and thermal load by milling and thermal-cold cycling were designed and researched, which were used to characterize the crushability for silica sand particles, the microstructure was observed by SEM. According to the user’s experience in actual application, the crushability of Sand C was the best and then Sand B, the last Sand A. The results indicated that mechanical load, thermal load and thermal-mechanical load can all be used to characterize the crushability of foundry sand particles. Microscopic appearances can qualitatively characterize the crushability of foundry sand particles to a certain extent, combining with the additions and cracks which are observed on the surface.

Go to article

Authors and Affiliations

Yui Da
Quan-yang Ma
Xiao-hua Li
Xi Zhang
Fa-ping Hu
Yun Zhang
Wei-dong Xie

This page uses 'cookies'. Learn more