Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper reports on a long-wave infrared (cut-off wavelength ~ 9 μm) HgCdTe detector operating under nbiased condition and room temperature (300 K) for both short response time and high detectivity operation. The ptimal structure in terms of the response time and detectivity versus device architecture was shown. The response time of the long-wave (active layer Cd composition, xCd = 0.19) HgCdTe detector for 300 K was calculated at a level of τs ~ 1 ns for zero bias condition, while the detectivity − at a level of D* ~ 109 cmHz1/2/W assuming immersion. It was presented that parameters of the active layer and P+ barrier layer play a critical role in order to reach τs ≤ 1 ns. An extra series resistance related to the processing (RS+ in a range 5−10 Ω) increased the response time more than two times (τs ~ 2.3 ns).

Go to article

Authors and Affiliations

Piotr Martyniuk
Małgorzata Kopytko
Paweł Madejczyk
Aleksandra Henig
Kacper Grodecki
Waldemar Gawron
Jarosław Rutkowski
Download PDF Download RIS Download Bibtex

Abstract

A theoretical analysis of the mid-wavelength infrared range detectors based on the HgCdTe materials for high operating temperatures is presented. Numerical calculations were compared with the experimental data for HgCdTe heterostructures grown by the MOCVD on the GaAs substrates. Theoretical modelling was performed by the commercial platform SimuAPSYS (Crosslight). SimuAPSYS fully supports numerical simulations and helps understand the mechanisms occurring in the detector structures. Theoretical estimates were compared with the dark current density experimental data at the selected characteristic temperatures: 230 K and 300 K. The proper agreement between theoretical and experimental data was reached by changing Auger-1 and Auger-7 recombination rates and Shockley-Read-Hall carrier lifetime. The level of the match was confirmed by a theoretical evaluation of the current responsivity and zero-bias dynamic resistance area product (R0A) of the tested detectors.
Go to article

Bibliography

  1. Lawson, W. D., Nielson, S., Putley, E. H. & Young, A. S. Preparation and properties of HgTe and mixed crystals of HgTe-CdTe. Phys. Chem. Solids 9, 325–329 (1959). https://doi.org/10.1016/0022-3697(59)90110-6
  2. Rogalski, A. HgCdTe infrared detector material: history, status and outlook. Prog. Phys. 68, 2267–2336 (2005). https://doi.org/10.1088/0034-4885/68/10/r01
  3. Hansen, G. L., Schmit, J. L. & Casselman, T. N. Energy gap versus alloy composition and temperature in Hg1-xCdx J. Appl. Phys. 53, 7099–7101 (1982). https://doi.org/10.1063/1.330018
  4. Harman, T. C. & Strauss, J. Band structure of HgSe and HgSe-HgTe alloys. Appl. Phys. 32, 2265–2270 (1961). https://doi.org/10.1063/1.1777057
  5. Martyniuk, P. & Rogalski, A. Performance comparison of barrier detectors and HgCdTe photodiodes. Eng. 53, 106105 (2014). https://doi.org/10.1117/1.OE.53.10.106105
  6. Rogalski, A. Infrared and Terahertz Detectors. (3rd) (CRC Press Taylor & Francis Group, 2020). https://doi.org/10.1201/b21951
  7. Lei, W., Antoszewski, J. & Faraone L. Progress, challenges, and opportunities for HgCdTe infrared materials and Detectors. Phys. Rev. 2, 041303 (2015). https://doi.org/10.1063/1.4936577
  8. Norton, P. HgCdTe infrared detectors. Opto-Electron. Rev. 10, 159–174 (2002). https://optor.wat.edu.pl/10(3)159.pdf
  9. Qiu, W. C., Jiang, T. & Cheng, X. A. A bandgap-engineered HgCdTe PBπn long-wavelength infrared detector. Appl. Phys. 118, 124504 (2015). https://doi.org/10.1063/1.4931661
  10. Iakovleva, N. I. The study of dark currents in HgCdTe hetero-structure photodiodes. Commun. Technol. Electron. 66, 368–374 (2021). https://doi.org/10.1134/S1064226921030220
  11. Martyniuk, P. & Rogalski, A. HOT infrared photodetectors. Opto-Electron. Rev. 21, 240–258 (2013). https://doi.org/10.2478/s11772-013-0090-x
  12. Piotrowski, J. & Rogalski, A. Uncooled long wavelength infrared photon detectors. Infrared Phys. Technol. 46, 115–131 (2004). https://doi.org/10.1016/j.infrared.2004.03.016
  13. Elliott, C. T. Non-equilibrium mode of operation of narrow-gap semiconductor devices. Sci. Technol. 5, S30–S37 (1990). https://doi.org/10.1088/0268-1242/5/3S/008
  14. Maimon, S. & Wicks, G. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Phys. Lett. 89, 151109 (2006). https://doi.org/10.1063/1.2360235
  15. Kopytko, M., Kębłowski , A., Gawron, W. & Pusz, LWIR HgCdTe barrier photodiode with Auger-suppression. Semicond. Sci. Technol. 31, 035025 (2016). https://doi.org/10.1088/0268-1242/31/3/035025
  16. He, J. et al. Design of a bandgap-engineered barrier-blocking HOT HgCdTe long-wavelength infrared avalanche photodiode. Express 28, 33556 (2020). https://doi.org/10.1364/OE.408526
  17. Gawron, W. et al. MOCVD Grown HgCdTe heterostructures for medium wave infrared detectors. Coatings 11, 611 (2021). https://doi.org/10.3390/coatings11050611
  18. Kębłowski, A. et al. Progress in MOCVD growth of HgCdTe epilayers for HOT infrared detectors. SPIE. 9819, 98191E-1 (2016). https://doi.org/10.1117/12.2229077
  19. APSYS Macro/User’s Manual ver. 2011. Crosslight Software, Inc. (2011).
  20. Capper, P. P. Properties of Narrow Gap Cadmium-Based Compounds. (INSPEC, the Institution of Electrical Engineers, 1994).
  21. Long, F. et al. The structural dependence of the effective mass and Luttinger parameters in semiconductor quantum wells. Appl. Phys. 82, 3414–3421 (1997). https://doi.org/10.1063/1.365657
  22. Lopes, V. C., Syllaios, A. J. & Chen, M. C. Minority carrier lifetime in mercury cadmium telluride. Sci. Technol. 8, 824–841 (1993). https://doi.org/10.1088/0268-1242/8/6s/005
  23. Aleshkin, V.Y. et al. Auger recombination in narrow gap HgCdTe/CdHgTe quantum well heterostructures. Appl. Phys. 129, 133106 (2021). https://doi.org/10.1063/5.0046983
  24. Reine, M. B. et al. HgCdTe MWIR back-illuminated electron-initiated avalanche photodiode arrays. Electron. 36, 1059–1067 (2007). https://doi.org/10.1007/s11664-007-0172-y
  25. Schuster, J. et al. Junction optimization in HgCdTe: Shockley-Read-Hall generation-recombination suppression. Phys. Lett. 107, 023502 (2015). https://doi.org/10.1063/1.4926603
  26. Schacham, S. E. & Finkman, E. Recombination mechanisms in p-type HgCdTe: Freezeout and background flux effects. Appl. Phys. 57, 2001–2009 (1985). https://doi.org/10.1063/1.334386
  27. Zhu, L. et al. Temperature-dependent characteristics of HgCdTe mid-wave infrared e-avalanche photodiode. IEEE J. Sel. Top. Quantum Electron. 28, 3802709 (2022). https://doi.org/10.1109/JSTQE.2021.3121273
  28. Kopytko, M., Jóźwikowski, K., Martyniuk, P. & Rogalski, A. Photon recycling effect in small poxel p-i-n HgCdTe long wavelenght infrared photodiodes. Infrared Phys. Technol. 97, 38–42 (2019). https://doi.org/10.1016/j.infrared.2018.12.015
  29. Olson, B. V. et al. Auger recombination in long-wave infrared InAs/InAsSb type-II superlattices. Phys. Lett. 107, 261104 (2015). https://doi.org/10.1063/1.4939147
  30. Beattie, A. R. & Landsberg, P. Auger effect in semiconductors. Proc. Math. Phys. Eng. Sci. A249, 16−29 1959. https://doi.org/10.1098/rspa.1959.0003
  31. Krishnaumurthy, S. & Casselman, T. N. A detailed calculation of the Auger lifetime in p-type HgCdTe. Electron. Mater. 29, 828−831 (2000). https://doi.org/10.1007/s11664-000-0232-z
Go to article

Authors and Affiliations

Tetiana Manyk
1
ORCID: ORCID
Jarosław Rutkowski
1
ORCID: ORCID
Paweł Madejczyk
1
ORCID: ORCID
Waldemar Gawron
1 2
ORCID: ORCID
Piotr Martyniuk
1
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, 2. Kaliskiego St., 00-908 Warsaw, Poland
  2. VIGO System S.A., 129/133 Poznańska St., 05-850 Ożarów Mazowiecki, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents examples of infrared detectors with mercury cadmium telluride elaborated at the Institute of Applied Physics, Military University of Technology and VIGO Photonics S.A. Fully doped HgCdTe epilayers were grown with the metal organic chemical vapour deposition technique which provides a wide range of material composition covering the entire infrared range from 1.5 µm to 14 µm. Fundamental issues concerning the design of individual areas of the heterostructure including: the absorber, contacts, and transient layers with respect to their thickness, doping and composition were discussed. An example of determining the gain is also given pointing to the potential application of the obtained devices in avalanche photodiode detectors that can amplify weak optical signals. Selected examples of the analysis of current-voltage and spectral characteristics are shown. Multiple detectors based on a connection in series of small individual structures are also presented as a solution to overcome inherent problems of low resistance of LWIR photodiodes. The HgCdTe detectors were compared with detectors from III-V materials. The detectors based on InAs/InAsSb superlattice materials achieve very comparable parameters and, in some respects, they are even superior to those with mercury cadmium telluride.
Go to article

Authors and Affiliations

Paweł Madejczyk
1
ORCID: ORCID
Waldemar Gawron
1 2
ORCID: ORCID
Jan Sobieski
2
ORCID: ORCID
Piotr Martyniuk
1
ORCID: ORCID
Jarosław Rutkowski
1
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, 2 gen. Kaliskiego St., 00-908 Warsaw, Poland
  2. Vigo Photonics S.A., 129/133 Poznańska St., 05-850 Ożarów Mazowiecki, Poland
Download PDF Download RIS Download Bibtex

Abstract

The temperature dependence of photoluminescence spectra has been studied for the HgCdTe epilayer. At low temperatures, the signal has plenty of band-tail states and shallow/deep defects which makes it difficult to evaluate the material bandgap. In most of the published reports, the photoluminescence spectrum containing multiple peaks is analyzed using a Gaussian fit to a particular peak. However, the determination of the peak position deviates from the energy gap value. Consequently, it may seem that a blue shift with increasing temperature becomes apparent. In our approach, the main peak was fitted with the expression proportional to the product of the joint density of states and the Boltzmann distribution function. The energy gap determined on this basis coincides in the entire temperature range with the theoretical Hansen dependence for the assumed Cd molar composition of the active layer. In addition, the result coincides well with the bandgap energy determined on the basis of the cut-off wavelength at which the detector response drops to 50% of the peak value.
Go to article

Authors and Affiliations

Krzysztof Murawski
1
ORCID: ORCID
Małgorzata Kopytko
1
ORCID: ORCID
Paweł Madejczyk
1
ORCID: ORCID
Kinga Majkowycz
1
ORCID: ORCID
Piotr Martyniuk
1
ORCID: ORCID

  1. Military University of Technology, Institute of Applied Physics, 2 Kaliskiego St., 00-908 Warsaw, Poland

This page uses 'cookies'. Learn more