Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Nowadays, Aluminium (Al) based hybrid surface composites are amongst the fastest developing advanced materials used for structural applications. Friction Stir Processing (FSP) has emerged as a clean and flexible solid-state surface composites fabrication technique. Intensive research in this field resulted in numerous research output; which hinders in finding relevant meta-data for further research with objectivity. In order to facilitate this research need, present article summarizes current state of the art and advances in aluminium based hybrid surface composites fabrication by FSP with in-situ and ex-situ approach. Reported literature were read and systematically categorized to show impacts of different types of reinforcements, deposition techniques, hybrid reinforcement ratio and FSP machine parameters on microstructures, mechanical and tribological characteristics of different Al alloys. Challenges and opportunities in this field have been summarized at the end, which will be beneficial to researchers working on solid state FSP technique.

Go to article

Authors and Affiliations

Namdev A. Patil
Srinivasa Rao Pedapati
Othman Bin Mamat
Download PDF Download RIS Download Bibtex

Abstract

Owing to the excellent properties, graphene nanoplatelets (GNPs) show great reinforcing ability to improve the mechanical and tribological properties of Al nanocomposites for many automotive applications. In this work, the GNPs dispersion and reinforcing effect in Al nanocomposite was tested. Solvent dispersion via tip sonication and facile low energy ball milling (tumbling milling) using two milling speeds 200 and 300 rpm were employed to develop GNPs/Al powders. Sintering response of the GNPs/Al sintered samples was gauged at two temperatures (550oC and 620oC). The effects of GNPs content, milling rotation speed and sintering temperature on the density, hardness and wear properties of the nanocomposite were examined. The results indicate that relative density % decreases with increasing GNPs content due to possible reagglomeration. The highest hardness of 35.6% and wear rate of 76.68% is achieved in 0.3 wt.% GNPs/Al nanocomposite processed at 300 rpm and 620oC as compared to pure Al due to uniform dispersion, higher diffusion rate at a higher temperature and effective lubrication effect.

Go to article

Authors and Affiliations

Zeeshan Baig
Othman Mamat
Mazli Mustapha
Sadaqat Ali

This page uses 'cookies'. Learn more