Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the stability analysis of a sandwich plate of the shape of an isosceles trapezoid, subjected to unidirectional in-plane compression. The critical load value of the trapezoidal sandwich plate was obtained by a combination of the Galerkin orthogonalisation method and the proposed method of the coordinate system transformation. An influence of plate material and geometrical properties on the critical load level was analysed. The obtained results were verified in a numerical experiment conducted with the FEM ANSYS software package.
Go to article

Authors and Affiliations

Radosław Mania
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to determine the hardness and reduced modulus of elasticity of juvenile wood of Scots pine (Pinus sylvestris L.) using the nanoindentation method, and then to compare the results obtained with those of mature wood. The hardness of juvenile pine wood determined by means of the nanoindentation method was 0.444 GPa while for mature wood it was 0.474 GPa. Statistically significant differences between the values were found. The reduced modulus of elasticity in juvenile wood was 14.0 GPa and 16.4 GPa in mature wood. Thus, the hardness values obtained were about 7% higher, while the modulus of elasticity was 17% higher in mature wood. All determinations were made in the S2-layer of the secondary cell wall.

Go to article

Authors and Affiliations

P. Mania
M. Nowicki

Authors and Affiliations

M. Figlerowicz
A. Modlińska-Cwalińska
A. Mania
K. Mazur-Melewska
P. Kemnitz
K. Jończyk-Potoczna
W. Służewski
Download PDF Download RIS Download Bibtex

Abstract

Multilayered composites based on light metals are promising materials in many applications. In the present work the 15-layered clad, composed of alternately stacked of Ti(Gr.1) and AA1050-H24 alloy sheets of 1 mm thick has been investigated with respect to determination of the kinetic of the Al3Ti phase growth. The defect-free multilayered composite was successfully formed by explosive welding technology. Then EXW samples were modified via annealing at the temperature of 600oC in closed die under pressure of 44 MPa for various times ranged between 1 and 10 h. Transmission and Scanning Electron Microscopy examinations were conducted in order to study the kinetic of the elements migration across the interfaces between the layers of the Al/Ti composite. The macro-scale observations of samples after EXW revealed that wavy interfaces were always formed in layers near the explosive charge. The increase of the distance from the top surface leads to flattening of the interface with very thin reaction layer between Al and Ti sheets. During annealing the kinetic of the Al3Ti phase growth is similar near all interfaces and coincides with data from other works. It was found that despite the loading after 10 h of annealing still only small part of Al-sheets undergoes dissolution and the width of the reaction layer does not exceed 5-8 µm.

Go to article

Authors and Affiliations

P. Petrzak
ORCID: ORCID
I. Mania
ORCID: ORCID
H. Paul
ORCID: ORCID
Ł. Maj
ORCID: ORCID
A. Gałka
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the microstructural and texture changes in polycrystalline CuZn30 alloy, copper, and AA1050 aluminium alloy have been studied to describe the crystal lattice rotation during shear bands formation. The hat-shaped specimens were deformed using a drop-hammer at the strain rate of 560 s –1. Microstructure evolution was investigated using optical microscopy, whereas texture changes were examined with the use of a scanning electron microscope equipped with the EBSD facility. The microstructural observations were correlated with nanohardness measurements to evaluate the mechanical properties of the sheared regions. The analyses demonstrate the gradual nature of the shear banding process, which can be described as a mechanism of the bands nucleation and then successive growth rather than as an abrupt instability. It was found that regardless of the initial orientation of the grains inside the sheared region, a well-defined tendency of the crystal lattice rotation is observed. This rotation mechanism leads to the formation of specific texture components of the sheared region, different from the one observed in a weakly or non-deformed matrix. During the process of rotation, one of the {111} planes in each grain of the sheared region ‘tends’ to overlap with the plane of maximum shear stresses and one of the <110> or <112> directions align with the shear direction. This allows slip propagation through the boundaries between adjacent grains without apparent change in the shear direction. Finally, in order to trace the rotation path, transforming the matrix texture components into shear band, rotation axis and angles were identified.
Go to article

Authors and Affiliations

I. Mania
1
ORCID: ORCID
H. Paul
1
ORCID: ORCID
R. Chulist
1
ORCID: ORCID
P. Petrzak
1
ORCID: ORCID
M. Miszczyk
1
ORCID: ORCID
M. Prażmowski
2
ORCID: ORCID

  1. Polish Academy of Sciences, Institute of Metallurgy and Materials Science, 25 Reymonta Str., 30-059 Krakow, Poland
  2. Opole University of Technology, Faculty of Mechanics, 76 Prószkowska Str., 45-758 Opole, Poland
Download PDF Download RIS Download Bibtex

Abstract

Metal-intermetallic layered (MIL) composites attract considerable attention due to their remarkable structural and ballistic performance. This study aimed to develop a Ti/Al-based multilayered MIL material by adding ceramic powders, since they can improve the composite’s impact resistance. To this end, an experiment was conducted which a stack of alternating Ti and Al sheets bonded by hot pressing; Ti/Al multilayers containing additional layers of Al2O3 and SiC powders were also produced. The samples obtained were examined using electron microscopy techniques. The clads’ mechanical properties were investigated using a Charpy hammer. In the reaction zone, only one intermetallic phase occurred: the Al3Ti phase. The model with an additional Al2O3 layer showed the highest impact energy. None of the Ti/Al clads broke during the Charpy impact test, a result proving their high ductility.
Go to article

Bibliography

[1] I.A. Bataev, A.A. Bataev, V.I. Mali, D.V. Pavliukova, Structural and mechanical properties of metallic-intermetallic laminate composites produced by explosive welding and annealing, Mater. Design 35, 225-234 (2012). DOI: https://doi.org/10.1016/j.matdes.2011.09.030
[2] F. Foadian, M. Soltanieh, M. Adeli, M. Etminanbakhsh, A Study on the Formation of Intermetallics During the Heat Treatment of Explosively Welded Al-Ti Mulitlayers, Metall. Mater. Trans. A 45A, 1823 (2014). DOI: https://doi.org/10.1007/s11661-013-2144-6
[3] H. Paul, Ł. Maj, M. Prażmowski, A. Gałka, M. Miszczyk, P. Petrzak, Microstructure and mechanical properties of multilayered Al/Ti composites produced by explosive welding, Procedia Manufacturing 15, 1391-1398 (2018). DOI: https://doi.org/10.1016/j.promfg.2018.07.343
[4] D.M. Fronczek, R. Chulist, Z. Szulc, J. Wojewoda-Budka, Growth kinetics of TiAl3 phase in annealed Al/Ti/Al explosively welded clads, Mater. Lett. 198, 160-163 (2017). DOI: https://doi.org/10.1016/j.matlet.2017.04.025
[5] F. Kong, Y. Chen, D. Zhang, Interfacial microstructure and shear strength of Ti-6Al-4V/TiAl laminate composite sheet fabricated by hot packed rolling, Mater. Design 32, 3167-3172 (2011). DOI: https://doi.org/10.1016/j.matdes.2011.02.052
[6] H. Xiao, Z. Qi, C. Yu, C. Xu, Preparation and properties for Ti/ Al clad plates generated by differential temperature rolling, J. Mater. Process. Tech. 249, 285-290 (2017). DOI: https://doi.org/10.1016/j.jmatprotec.2017.06.013
[7] M. Fan, Z. Luo, Z. Fu, X. Guo, J. Tao, Vacuum hot pressing and fatigue behaviors of Ti/Al laminate composites, Vacuum 154, 101- 109 (2018). DOI: https://doi.org/10.1016/j.vacuum.2018.04.047
[8] L. Qin, M. Fan, X. Guo, J. Tao, Plastic deformation behaviors of Ti-Al laminated composite fabricated by vacuum hot-pressing, Vacuum 155, 96-107 (2018). DOI: https://doi.org/10.1016/j.vacuum.2018.05.021
[9] J . Li, K.H. Wang, K. Zhang L.L. Kang, H. Liang, Mechanism of interfacial reaction between Ti and Al-ceramic, Mater. Design 105, 223-233 (2016). DOI: https://doi.org/10.1016/j.matdes.2016.05.073
[10] G .H.S.F.L. Carvalho, I. Galvão, R. Mendes, R.M. Leal, A. Loureiro, Explosive welding of aluminium to stainless steel, J. Mat. Process. Tech. 262, 340-349 (2018). DOI: https://doi.org/10.1016/j.jmatprotec.2018.06.042
[11] I. D. Zakharenko, Critical conditions in detonation welding, Fizika Goreniya i Vzryva 8 (3), 422-427 (1972).
[12] M. Tayyebi, D. Rahmatabadi, M. Adhami, R. Hashemi, Influence of AR B technique on the microstructural, mechanical and fracture properties of the multilayered Al1050/Al5052 composite reinforced by SiC particles, J. Mater. Res. Tech. 8 (5), 4287-4301 (2019). DOI: https://doi.org/10.1016/j.jmrt.2019.07.039
[13] M.N. Yuan, Lili Li, Zh J. Wang, Study of the microstructure modulation and phase formation of Ti-Al3Ti laminated composites, Vacuum 157, 481-486 (2018). DOI: https://doi.org/10.1016/j.vacuum.2018.09.002
Go to article

Authors and Affiliations

W. Kowalski
1
ORCID: ORCID
H. Paul
1
ORCID: ORCID
P. Petrzak
1
ORCID: ORCID
Ł. Maj
1
ORCID: ORCID
I. Mania
1
ORCID: ORCID
M. Faryna
1
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science , Polish Academy of Sciences , 25 Reymonta Str., 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study aimed to develop Fe/Al multilayered metallic/intermetallic composites produced by hot pressing under an air atmosphere. Analyses were carried out on the composite plates made up of alternatively situated sheets of AA1050 aluminum alloy and DN04 low carbon steel, which were annealed at 903 K for 2, 5, and 10 h. Annealing was performed to obtain reaction layers of distinct thickness. The samples were examined using X-Ray diffraction and scanning and transmission electron microscope equipped with an energy-dispersive X-Ray spectrometer. To correlate the structural changes with mechanical properties, microhardness measurements in near-the-interface layers were performed. All the reaction layers grew with parabolic kinetics with η-Al5Fe2 intermetallic phase as the dominant component. After annealing for 5 and 10 hours, a thin sublayer of θ-Al13Fe4 phase was also detected.
Go to article

Authors and Affiliations

W. Kowalski
1
ORCID: ORCID
H. Paul
1
ORCID: ORCID
I. Mania
1
ORCID: ORCID
P. Petrzak
1
ORCID: ORCID
P. Czaja
1
ORCID: ORCID
R. Chulist
1
ORCID: ORCID
A. Góral
1
ORCID: ORCID
M. Szlezynger
1
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Str., 30-059 Krakow, Poland

This page uses 'cookies'. Learn more