Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Tremors occur randomly in terms of time, energy as well as the location of their focus. The present state of knowledge and technology does not allow for the precise prediction of these values. Therefore, it is extremely important to correctly select a powered roof support for specific geological and mining conditions, especially in the case of areas where dynamic phenomena are often registered. This article presents information on rock burst hazard associated with the occurrence of rock mass tremors and their influence on a powered roof support. Furthermore, protection methods of a powered roof support against the negative effects of dynamic phenomena are discussed. As a result of an analysis the methodology, to determine the impact of dynamic phenomena on the powered roof support in given geological and mining conditions is presented.

Go to article

Authors and Affiliations

Wojciech Masny
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In 2017, the Central Mining Institute (GIG), Jastrzębska Spółka Węglowa SA (JSW SA), the largest producer of coking coal in Europe, and JOY KOMATSU, the producer of mining machinery, signed a consortium. The project’s main goal was to reduce the costs of driving mine workings by reintroducing the rock bolt support. The works began in November 2019, and for the first time in the history of Polish coal mining, a Bolter Miner machine was used for the purpose. The paper presents the results of measuring the axial forces in rock bolts at the measurement base and their analysis with numerical modelling.
Go to article

Bibliography

[1] V. Artemyev, P. McInally, Improvements in Longwall Technology and Performance in Kuzbass Mines of Suek. Proceedings of the 18th Coal Operators’ Conference, Mining Engineering, University of Wollongong, 124-133 (2018).
[2] S . Banerjee, Performance evaluation of continuous miner based underground mine operation system: An OEE based approach. New Trends in Production Engineering 2, 1, 596-603 (2019). DOI: https://doi.org/10.2478/ntpe-2019-0065
[3] D . Bolstad, J. Hill, Bureau of Mines rock bolting research. Proceedings of the International Symposium on Rock Bolting, Abisko, Sweden, 313-320 (1983).
[4] F. Breinig, K. Opolony, Geplante Doppelnutzung einer Rechtankerstrecke in 1200 m Teufe im Flöz D2/C. Aachen International Mining Symposia, 5th International Symposium – Roofbolting in Mining, RWTH Aachen, 159-177 (2004).
[5] T . Bush, Streckenausbau mit eisernen Ankern. Zeitschrift für das Berg – Hütten – und Salinenwesen, Berlin, 7-9 (1919).
[6] I . Canbulat, A. Wilkinson, G. Prohaska, M. Mnisi, N. Singh, An investigation into the support systems in South African collieries. Safety in Mines Research Advisory Committee, Project No SI M 020205, CSIR Division of Mining Technology, Ground Consulting (Pty) Ltd (2005).
[7] C . Cao, PhD thesis, Bolt profile configuration and load transfer capacity optimisation. School of Civil, Mining and Environmental Engineering, University of Wollongong (2012).
[8] D .R. Dolinar, S.K. Bhatt, Trends in roof bolt application. Proceedings: new technology for coal mine roof support. C. Mark, D.R. Dolinar, R.J. Tuchman, T.M. Barczak, S.P. Signer, P.F. Wopat, (Eds.) Cincinnati, OH: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, DHHS (NIOSH) Publication No. 2000-151 (IC 9453), 43-51 (2000).
[9] R . Fletcher, Roof Bolting Equipment and Practices. Mng. Cong. J., Nov., 80-82 (1956).
[10] S .D. Flook, J.J. Leeming, Recent developments in longwall mining entry development and room and pillar systems. Gospodarka Surowcami Mineralnymi 24, 4/3, 11-23 (2008).
[11] Golder Associates UK Ltd, Initial Rockbolt Support Design. Rockbolting Trial, Budryk Colliery, Poland. Nottingham (2018).
[12] B. Hebblewhite, 25 Years of Ground Control Developments, Practices, and Issuses in Australia. 25th International Conference on Ground Control in Mining, Morgantown, WV, 111-117 (2006).
[13] H. Jalalifar, PhD thesis, A new approach in determining the load transfer mechanism in fully grouted bolts. School of Civil, Mining and Environmental Engineering, University of Wollongong (2006).
[14] H. Jurecka, Ankerausbau eine Schlüsseltechnologie für Hochleistungsstrebbetriebe in großen Teufen. Aachen International Mining Symposia, 4th International Symposium – Roofbolting in Mining, RWTH Aachen, 1-17 (2001).
[15] V. Kajzar, R. Kukutsch, P. Waclawik, P. Konicek, Coal pillar deformation monitoring using terrestrial laser scanner technology in room and pillar panel – A case study from the Ostrava-Karvina Coal Field. Rock Mechanics and Rock Engineering: From the Past to the Future – Ulusay et al. (Eds.), Taylor & Francis Group, London, 951-956 (2016).
[16] H. Kang, Support technologies for deep and complex roadways in underground coal mines: a review. Int. J. Coal Sci. Technol. 1 (3), 261-277 (2014). DOI: https://doi.org/10.1007/s40789-014-0043-0
[17] H. Kang, Sixty years development and prospects of rock bolting technology for underground coal mine roadways in China. Journal of China University of Mining & Technology 45 (6), 1071-1081 (2016).
[18] K . Kovári, The Control of Ground Response – Milestones up to the 1960s. Proc. of the AITES -ITA World Tunnel Congress, Italy, Milan, 93-119 (2001).
[19] A . Kumar, R. Singh, P. Waclawik, Numerical Modelling Based Investigation of Coal Pillar Stability for Room and Pillar Development at 900 m Depth of Cover. 37TH International Conference on Ground Control in Mining, 193-203 (2018).
[20] B. Langhanki, Planungskonzeption zur Doppelnutzung einer Rechtankerstrecke im Flöz D2/C in 1.200 m Teufe. Aachen International Mining Symposia, 4th International Symposium – Roofbolting in Mining, RWTH Aachen, 217-233 (2001).
[21] J. Luo, PhD thesis, A New Rock Bolt Design Criterion and Knowlwdge-based Expert System for Stratified Roof. Faculty of the Virginia Polytechnic Institute and State University, Blacksburg, Virginia (1999).
[22] T . Majcherczyk, A. Szaszenko, E. Sdżwiżkowa, Fundamentals of geomechanics. Wydawnictwo AGH, Kraków (2006).
[23] C .P. Mangelsdorf, Current Trends in Roof Truss Hardware. Proc. of 2nd Conference on Ground Control in Mining, edited by S.S. Peng, 108-112 (1982).
[24] C . Mark, Design of roof bolt systems. Proc.New Technology For Coal Mine Roof Support. U.S. Department of Health and Human Services, Pittsburgh, PA, 111-131 (2000).
[25] J. Modi, S. Bharti, R. Kant, Applicability of Continuous Miner in Room and Pillar Mining System: Higher Production and Productivity with Safety. International Conference on Deep Excavation, Energy Resource and Production (DEE P16), IIT Kharagpur, India (2017).
[26] A . Nierobisz, Rockbolting – history, present and future. Międzynarodowa Konferencja Szkoleniowa: Perspektywy stosowania obudowy kotwowej w polskich kopalniach węgla kamiennego, Jaworze, kwartalnik GIG Nr 2/1/2010, 184-203 (2010).
[27] A . Nierobisz, Development of Roof Bolting Use in Polish Coal Mines. Journal of Mining Science 47, No. 6, 751- 760 (2011).
[28] B. Neyman, R. Gocman, Guidelines for rockbolt support in workings. Biuletyn techniczno-informacyjny GIG nr 9 (1960).
[29] K. Opolony, H. Witthaus, A. Hucke, A. Studeny, Ergebnisse von numerischen Berechnungen und physikalischen Modellversuchen als Planungshilfe für eine Rechteckankerstrecke in Flöz D2/C. Aachen International Mining Symposia, 5th International Symposium – Roofbolting in Mining, RWTH Aachen, 539-554 (2004).
[30] S. Peng, Coal Mine Ground Control. (3rd ed.), Syd Peng Publisher, Morgantown (2008).
[31] K. Podgórski, W. Podgórski, Rockbolt support of underground workings. Wydawnictwo Śląsk. Katowice (1969).
[32] L. Rabcewicz, Bolted support for tunnels. Mine and Quarry- Engineering, April, 153-159 (1955).
[33] E.U. Reuther, A. Heime, Verbesserte Bemessung von Ankerausbau in Abbau- und Basisstrecken. Kommission der Europäischen Gemeinschaften, technische Forschung Kohle, Forschungsvertrag Nr. 7220-AB/120, Luxemburg (1990).
[34] A. Sahebi, J. Hossein, M. Ebrahimi, Stability analysis and optimum support design of a roadway in a faulted zone during longwall face retreat – case study: Tabas Coal Mine. N. Aziz (Eds.), 10th Underground Coal Operators’ Conference, University of Wollongong & the Australasian Institute of Mining and Metallurgy, 88-96 (2010).
[35] R. Schach, K. Garshol, A.M. Heltzen, Rock bolting: a practical handbook. Pergamon Press (1979).
[36] A.J.S. Spearing, G. Bylapudi, K. Mondal, A.W. Bhagwat, Rock anchor corrosion potential determination in US underground coal mines. The Southern African Institute of Mining and Metallurgy 6th South African Rock Engineering Symposium SARES (2014).
[37] A.J.S. Spearing, B. Greer, M. Reilly, Improving rockbolt installations in US coal mines. The Journal of The Southern African Institute of Mining and Metallurgy, Vol. 111, 555-563 (2011).
[38] S. Tadolini, R. Mazzoni, Understanding roof bolt selection and design still remains priceless. 25th International Conference on Ground Control, July 2006. Morgantown, WV, USA , 382-389 (2006).
[39] S . Taghipoor, Application of numerical modelling to study the efficiency of roof bolting pattern in east 1 main roadway of Tabas coal mine. 6th International Conference on Case Histories in Geotechnical Engineering, Arlington, 2-5 (2008).
[40] P. Waclawik, J. Ptacek, P. Konicek, R. Kukutsch, J. Nemcik, Stress-state monitoring of coal pillars during room and pillar extraction. Journal of Sustainable Mining 15, 49-56 (2016). DOI: https://doi.org/10.46873/2300-3960.1207
[41] P. Waclawik, R. Snuparek, R. Kukutsch, Rock Bolting at the Room and Pillar Method at Great Depths. Procedia Engineering 191, 575-582 (2017). DOI: https://doi.org/10.1016/j.proeng.2017.05.220
[42] W. Weigel, Channel Iron for Roof Control. Engineering and Mining Journal, Vol. 144, May, 70-72 (1943).
[43] J. Arthur, Ground control in coal mines in Great Britain. Coal 2006: Coal Operators’ Conference, University of Wollongong & the Australasian Institute of Mining and Metallurgy, 10-19 (2006).
Go to article

Authors and Affiliations

Wojciech Masny
1
ORCID: ORCID
Łukasz Nita
2
ORCID: ORCID
Jerzy Ficek
3

  1. Central Mining Institute, 1 Gwarków Sq., 40-166 Katowice, Poland
  2. Jastrzębska Spółka Węglowa SA, KWK „Budryk”, Poland
  3. „Geofic“ Scientific and Technical Office, Poland

This page uses 'cookies'. Learn more