Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Video walls are useful to display large size video content. Empowered video walls combine display functionality with computing power. Such video walls can display large scientific visualizations. If they can also display high-resolution video streamed over a network, they could enable distance collaboration over scientific data. We proposed several methods of network streaming of highresolution video content to a major type of empowered video walls, which is the SAGE2 system. For all methods, we evaluated their performance and discussed their scalability and properties. The results should be applicable to other web-based empowered video walls as well.
Go to article

Authors and Affiliations

Sven Ubik
Jiri Melnikov
Zdeňek Trávníček
Download PDF Download RIS Download Bibtex

Abstract

Using methods of physical material studies (scanning electron microscopy and micro X-ray spectral analysis), a study was carried out with focus on alteration of structure and phase composition in surface layers of Al-Si alloy (silumin АК10М2N) treated in electroexplosive alloying with a multiphase plasma jet formed in the process of aluminum foil explosion and carrying particles of Y2O3 weighted powder portion. It was revealed that a porous surface layer with non-homogeneously distributed alloying elements (silicon, yttrium) in it is formed in any conditions of electroexplosive alloying of silumin. Thickness of the modified layer is different, varying 50 to 160 µm, depending on the zone to be examined. The modified surface consists basically of Al, Si and Y. Yttrium in the modified layer is thought to be an indirect evidence of better physical and mechanical properties of the surface layer in comparison with the base material.

Go to article

Authors and Affiliations

D. Zagulyaev
S. Konovalov
V. Gromov
A. Melnikov
V. Shlyarov
Download PDF Download RIS Download Bibtex

Abstract

This paper aims to develop new highly efficient PSC-algorithms (algorithms that contain a polynomial-time sub-algorithm with sufficient conditions for the optimality of the solutions obtained) for several interrelated problems involving identical parallel machine scheduling. These problems share common basic theoretical positions and common principles of their solving. Two main intractable scheduling problems are considered: (“Minimization of the total tardiness of jobs on parallel machines with machine release times and a common due date” (TTPR) and “Minimising the total tardiness of parallel machines completion times with respect to the common due date with machine release times” (TTCR)) and an auxiliary one (“Minimising the difference between the maximal and the minimal completion times of the machines” (MDMM)). The latter is used to efficiently solve the first two ones. For the TTPR problem and its generalisation in the case when there are machines with release times that extend past the common due date (TTPRE problem), new theoretical properties are given, which were obtained on the basis of the previously published ones. Based on the new theoretical results and computational experiments the PSC-algorithm solving these two problems is modified (sub-algorithms A1, A2). Then the auxiliary problem MDMM is considered and Algorithm A0 is proposed for its solving. Based on the analysis of computational experiments, A0 is included in the PSC-algorithm for solving the problems TTPR, TTPRE as its polynomial component for constructing a schedule with zero tardiness of jobs if such a schedule exists (a new third sufficient condition of optimality). Next, the second intractable combinatorial optimization problem TTCR is considered, deducing its sufficient conditions of optimality, and it is shown that Algorithm A0 is also an efficient polynomial component of the PSC-algorithm solving the TTCR problem. Next, the case of a schedule structure is analysed (partially tardy), in which the functionals of the TTPR and TTCR problems become identical. This facilitates the use of Algorithm A1 for the TTPR problem in this case of the TTCR problem. For Algorithm A1, in addition to the possibility of obtaining a better solution, there exists a theoretically proven estimate of the deviation of the solution from the optimum. Thus, the second PSC-algorithm solving the TTCR problem finds an exact solution or an approximate solution with a strict upper bound for its deviation from the optimum. The practicability of solving the problems under consideration is substantiated.
Go to article

Authors and Affiliations

Sergii Telenyk
1
ORCID: ORCID
Grzegorz Nowakowski
1
ORCID: ORCID
Oleksandr Pavlov
2
ORCID: ORCID
Olena Misura
2
ORCID: ORCID
Oleg Melnikov
2
ORCID: ORCID
Olena Khalus
2
ORCID: ORCID

  1. Faculty of Electrical and Computer Engineering, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
  2. National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Prosp. Peremohy 37, Kyiv, Ukraine

This page uses 'cookies'. Learn more