Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 15
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Bromate is well known by-product produced by the ozonation of drinking water; the allowed concentration for human consumption has to be regulated to few μg/dm3 ranges. A method using ion chromatography has been developed, which will quantify bromate on this level, even in the presence of high levels of common anions such as chloride, nitrate and sulphate. The present article presents results of study of bromate determination in drinking water by two ion chromatographic methods. First was a direct method according to ISO 15061 with conductivity detector and limit of detection 4,5 μg/dm3. The second was new post-column derivatization reaction to produce tribromide ions, which was detected by UV detector. Limit of determination in this method was 0,5 μg/dm3. Both these methods are suitable to determination of bromate anions, because acceptable contents of bromate in drinking water in UE countries are 10 μg/dm3.
Go to article

Authors and Affiliations

Rajmund Michalski
Download PDF Download RIS Download Bibtex

Abstract

Chromium usually occurs in the (III) or (VI) oxidation state. Cr(III) is essential for mammalian systems to influence maintain several metabolic pathways. In contrast. Cr(YI) exerts toxic influence on biological systems and is strongly canccrogcnic. Cr(Vl) compounds arc usually highly soluble, mobile and bioavailable compared to sparingly soluble trivalent chromium compounds. Chromium is most often analysed using instrumental methods such as AAS or ICP. These methods are precise and sensitive but make determination of only total chromium. Possible content of Cr(VI) is estimated from the difference of total chromium content and Cr(III), which is analysed using photometric methods. This so-called "difference method" makes the calculated concentration of Cr(VI) is inaccurate. This paper describes sensitive and selective determination of Cr(VI) in various waters at ug/dnr' levels using a simple ion chromatography system with UV detector.
Go to article

Authors and Affiliations

Rajmund Michalski
Download PDF Download RIS Download Bibtex

Abstract

Chromium exists primarily in two oxidation states. The different toxicities and bioavailabilities of Cr(III) and Cr(VI) are public health concern and therefore require strict control. Some AAS/ICP methods work according to the so-called difference method and they do not allow the simultaneous determination of chromium(III) and (VI). The need of more accurate and rapid analysis of environmental samples has led to investigation of ion chromatography as an alternative to wet chemical chromium analyses. Conventional HPLC, photometric methods and atomic absorption spectroscopy analyse are less interference free than ion chromatography which has been used in a wide variety of chemical species. At present analytical chemists focus on alternative Cr(III)+Cr(Vl) methods which will be faster, more sensitive and cheaper than spectroscopic methods and which will allow to exclude many matrix interferences. This paper describes investigations of application of PDCA as a complexing agent of Cr (III) ions and its using in simultaneous determination of Cr(III) and Cr(VI) in water by means of ion chromatography with UV detector.
Go to article

Authors and Affiliations

Rajmund Michalski
Download PDF Download RIS Download Bibtex

Abstract

On 28 March 2023, the first ESP EASAC meeting in 2023 took place in Budapest at the invitation of the Hungarian Academy of Sciences. The broad and interesting range of issues addressed by Environmental Steering Panel should attract more interest also in Poland. Unfortunately, the activity in EASAC is pro publico bono, which is probably the main reason for the low activity of Polish scientists as experts invited to individual projects. Is the organisation referred to in this article credible? The answer is that, at the end of 2018, EASAC was awarded “Think Tank of the Year” by the prestigious Public Affairs Awards Europe. This shows that the activity is appreciated among professionals. I sincerely encourage anyone interested to find out more about what ESP EASAC is doing and to keep checking our activities.
Go to article

Authors and Affiliations

Rajmund Michalski
1

  1. Instytut Podstaw Inżynierii Środowiska PAN, Zabrze
Download PDF Download RIS Download Bibtex

Abstract

Demand for energy and resources has been growing as a result of population growth and increased consumption to the point where all the scientific evidence shows we are bumping up against fundamental planetary boundaries on which our civilizations depend. In new EASAC report trends that lead calls for “transformative” change, with a focus on some of the systemic and structural failures that are driving our current unsustainable development has been discussed.
Go to article

Authors and Affiliations

Rajmund Michalski
1

  1. Instytut Podstaw Inżynierii Środowiska PAN w Zabrzu
Download PDF Download RIS Download Bibtex

Abstract

This paper described a determination of volatile organic compounds (such as benzene, toluene, ethylbenzene, xylene and phenol) and polycyclic aromatic hydrocarbons (16 by US EPA method) in atmospheric air in Zabrze in 1997. Samples were collected on sorbents (graphitized carbon for BTEX, Chromosorb 102 for phenol and polypropylene filter for PAH) capable of selectivity trapping a wide range of substances. Samples were than analysed using an extraction by solvents followed by capillary gas chromatography with flame ionised detector or ion trap mass detector. The lower limit of detection was circa O.Ol μg/m3 for most compounds. Using a gas chromatograph with ion trap mass detector it was possible to identify 35 organic compounds in urban air in Zabrze. GC-MS is powerful tool for identification organic compounds, but GC with FID detector is most sensitive for quantitative determination of volatile organic compounds.
Go to article

Authors and Affiliations

Rajmund Michalski
Anna Węglarz
Ryszard Skrok
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was verification of the response of chamomile (Matricaria recutita (L.) Rauschert), peppermint (Mentha x piperita) lemon balm (Melissa officinalis L.), and sage (Salvia officinalis L.) on the elevated contents of inorganic As species in soils. The ability of herbs to accumulate arsenic was tested in pot experiment in which soils were contaminated by As(III) and As(V). The As(III), As(V), AB (arsenobetaine), MMA (monomethylarsonic acid) and DMA (dimethylarsinic acid) ions were successfully separated in the Hamilton PRP-X100 column with high performance-liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) techniques. The study examined total arsenic contents in soil and plants, as well as the mobility of the arsenic species from the soil into the studied plants. Peppermint demonstrated the highest arsenic concentration and phytoaccumulation among studied plants. The sequential chemical extraction showed that arsenic in the contaminated soil was mainly related to the oxide and organic-sulfide fractions. The results showed that the oxidized arsenic form had a greater ability to accumulate in herbs and was more readily absorbed from the substrate by plants. Research has shown that soil contaminated with As(III) or As(V) has different effects on the arsenic content in plants. The plant responses to strong environmental pollution varied and depended on their type and the arsenic species with which the soil was contaminated. In most cases it resulted in the appearance of the organic arsenic derivatives.

Go to article

Authors and Affiliations

Magdalena Jabłońska-Czapla
Rajmund Michalski
Katarzyna Nocoń
Katarzyna Grygoyć
Download PDF Download RIS Download Bibtex

Abstract

Disinfection of drinking water is usually carried out by chlorination process. This is a well known, effective technology, which has many advantages. however during this process dangerous for health byproducts, such as trihalornethanes as well as chlorate, chlorite and bromale arc formed. Another disinfection process. which has emerged as the most promising alternative to chlorination technique, is ozonation. In spite of undeniable advantages. there are certain undefined hazards resulting from this method of water treatment. It is especially due to formation of carcinogen bromale anions in bromide containing waters. Determination of bromale as well as other inorganic oxyhalides is usually carried out by ion chromatography with conductivity detection. The detection sensitivity can be improved by using alternative hyphenated techniques such as IC-ICPMS or IS-MS-MS. These techniques are very sensitive, but are highly sophisticated and the instrumentation is very expensive. "Post-column reactions". i.e. derivative techniques coupled with ion chromatography are a relatively cheap and good alternative. This paper is a review or the newest achievements in analytical techniques used for determination of inorganic oxyhalides by-products formed during various drinking water disinfection processes.
Go to article

Authors and Affiliations

Rajmund Michalski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Ultratrace analysis requires the use of extremely clean reagents, including water. Quality of water used in laboratories is crucial element of obtained reliable results. In chemical and biological laboratories, as well as industry, distilled, re-distilled and deionized waters arc used. Important factor of waler quality is the content of inorganic ions. One ofthe most competitive analytical techniques for trace analysis of inorganic anions and cations is ion chromatography. In the work ion chromatographic method for the determination of common inorganic anions (fluoride, chloride, nitrate, phosphate and sulfate) and cations (lithium, sodium, ammonium, potassium, magnesium and calcium) in distilled, re-distilled and deionized water has been developed and validated.
Go to article

Authors and Affiliations

Rajmund Michalski
ORCID: ORCID
Aleksandra Łyko
Download PDF Download RIS Download Bibtex

Abstract

The chemical composition of bulk deposition is an important aspect of assessing ambient air pollution. It contributes significantly to the removal of pollutants from the atmosphere and their transfer to other ecosystems. Thus, it is a reliable determinant of environmental chemistry. Therefore, bulk deposition can be considered useful for tracking the migration path of substances from different sources. The aim of the study carried out at five measurement points in Zabrze and Bytom was to assess the content of selected physico-chemical parameters in bulk deposition. Samples were collected continuously from November 2019 to November 2020. In the collected samples the following were determined: COD, pH, conductivity, dissolved organic carbon, inorganic carbon and total carbon; inorganic anions (Cl-, SO42-, NO3-, NO2-, Br-, PO43-) and cations (Li+, Mg2+, Ca2+, Na+, K+, NH4+), metals and metalloids (Mn, Ni, Co, Cu, Zn, As, Cd, Pb, Cr, and Fe), and carboxylic acids (formic, acetic, oxalic). The obtained test results were statistically processed using Excel, and the normality of data distribution was verified by Shapiro-Wilk test. The results show that pollutants transported in the atmosphere and introduced with precipitation in the Zabrze and Bytom areas are a significant source of area pollution of the region.
Go to article

Bibliography

  1. Azimi, S., Ludwig, A., Thevenot, D.R., & Colin, J.L. (2003). Trace metal determination in total atmospheric deposition in rural and urban areas, Science of the total environment, 308, 1-3, pp. 247–256. DOI:10.1016/S0048-9697(02)00678-2
  2. Czaplicka, M., Jaworek, K., & Wochnik, A. (2014). Determination of aldehydes in wet deposition, Archives of Environmental Protection, 40, 2, pp. 21–31. DOI:10.2478/aep-2014-0011
  3. D'Alessandro, W., Katsanou, K., Lambrakis, N., Bellomo, S., Brusca, L., & Liotta, M. (2013). Chemical and isotopic characterisation of bulk deposition in the Louros basin (Epirus, Greece). Atmospheric research, 132, pp. 399–410. DOI:10.1016/j.atmosres.2013.07.007
  4. EASAC – the European Academies’ Science Advisory Council (2020). Towards a sustainable future: transformative change and post-COVID-19 priorities. A Perspective by EASAC’s Environment Programme, (https://easac.eu/fileadmin/user_upload/EASAC_Perspective_on_Transformative_Change_Web_complete.pdf (12.01.2022)
  5. Fowler, J., Cohen, L., & Jarvis, P. (2013). Practical statistics for field biology, John Wiley & Sons, Hoboken 2013.
  6. Huston, R., Chan, Y.C., Gardner, T., Shaw, G., & Chapman, H. (2009). Characterisation of atmospheric deposition as a source of contaminants in urban rainwater tanks, Water Research, 43, 6, pp. 1630–1640. DOI:10.1016/j.watres.2008.12.045
  7. IMGW-PIB – Institute of Meteorology and Water Management - National Research Institute (2018). Precipitation chemistry monitoring and assessment of pollutant deposition to the ground in 2016-2018. Results of monitoring studies in the Silesian Voivodeship in 2017 (in Polish), (http://www.katowice.wios.gov.pl/monitoring/informacje/stan2017/opady.pdf (12.01.2022))
  8. Kosior, G., Samecka-Cymerman, A., & Brudzińska-Kosior, A. (2018). Transplanted Moss Hylocomium splendens as a Bioaccumulator of Trace Elements from Different Categories of Sampling Sites in the Upper Silesia Area (SW Poland): Bulk and Dry Deposition Impact, Bulletin of Environmental Contamination and Toxicology, 101, 24, pp. 479–485. DOI:10.1007/s00128-018-2429-y
  9. Kurwadkar, S., Kanel, S.R., & Nakarmi, A. (2020). Groundwater pollution: Occurrence, detection, and remediation of organic and inorganic pollutants, Water Environment Research, 92, 10, pp. 1659–1668. DOI:10.1002/wer.1415
  10. Liu, Z., Yang, J., Zhang, J., Xiang, H., & Wei, H. (2019). A bibliometric analysis of research on acid rain, Sustainability, 11, 11, 3077. DOI:10.3390/su11113077
  11. Nowak, A., Korszun-Kłak, K., & Zielonka, U. (2014). Long-Term Measurments of Atmospheric Mercury Species (TGM, TPM) and Hg Deposition in the Silesian Region, Poland: Concept of the Mercury Deposition Coefficient, Archives of Environmental Protection, 40, 3, pp. 43–60. DOI:10.2478/aep-2014-0023
  12. PB18 (test procedure), edition 4, 10.02.2016. The application of ICP-MS in water quality testing.
  13. Pecyna-Utylska, P., Konieczny, T., & Michalski, R. (2021). The influence of sample pH on the determination of selected carboxylic acids by isocratic ion chromatography, Chemistry & Chemical Technology, 15, 3, pp. 319–323. DOI:10.23939/chcht15.03.319
  14. Pęczkowski, G., Szawernoga, K., Kowalczyk, T., Orzepowski, W., & Pokladek, R. (2020). Runoff and Water Quality in the Aspect of Environmental Impact Assessment of Experimental Area of Green Roofs in Lower Silesia, Sustainability, 12, 11, 4793. DOI:10.3390/su12114793
  15. PN-EN 1484:1999 standard. Water Quality — Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC).
  16. PN-EN 27888:1999 standard. Water Quality — Determination of electrical conductivity.
  17. PN-EN ISO 10304-1:2009 standard. Water Quality — Determination of dissolved anions by liquid chromatography of ions — Part 1: Determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulfate.
  18. PN-EN ISO 10523:2012 standard. Water Quality — Determination of pH.
  19. PN-EN ISO 11885:2009 standard. Water Quality — Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES).
  20. PN-EN ISO 14911:2002 standard. Water Quality — Determination of dissolved Li+, Na+, NH4+, K+, Mn2+, Ca2+, Mg2+, Sr2+ and Ba2+ using ion chromatography — Method for water and waste water.
  21. PN-ISO 15705:2005 standard. Water quality — Determination of the chemical oxygen demand index (ST-COD) — Small-scale sealed-tube method.
  22. Polkowska, Z., Astel, A., Walna, B., Małek, S., Mądrzycka, K., Górecki, T., Siepak, J., & Namieśnik, J. (2005). Chemometric Analysis of Rainwater and Throughfall At Several Sites In Poland, Atmospheric Environment, 39, pp. 837–855. DOI:10.1016/j.atmosenv.2004.10.026
  23. Saadat, S., Rawtani, D., & Hussain, C.M. (2020). Environmental perspective of COVID-19, Science of the Total environment, 728, 138870. DOI:10.1016/j.scitotenv.2020.138870
  24. Sanjeeva, A., & Puttaswamaiah, S.G. (2018). Influence of Atmospheric Deposition and Roof Materials on Harvested Rainwater Quality, Journal of Environmental Engineering 144, 12, 04018121. DOI:10.1061/(ASCE)EE.1943-7870.0001460
  25. Siudek, P., Frankowski, M., & Siepak, J. (2015). Seasonal variations of dissolved organic carbon in precipitation over urban and forest sites in central Poland. Environmental Science and Pollution Research, 22, 14, pp. 11087–11096. DOI: 10.1007/s11356-015-4356-3
  26. Tositti, L., Pieri, L., Brattich, E., Parmeggiani, S., & Ventura, F. (2018). Chemical characteristics of atmospheric bulk deposition in a semi-rural area of the Po Valley (Italy). Journal of Atmospheric Chemistry, 75, 1, pp. 97–121. DOI: 10.1007/s10874-017-9365-9
  27. Wetherbee, G.A., Benedict, K.B., Murphy, S.F., & Elliott, E.M. (2019). Inorganic nitrogen wet deposition gradients in the Denver-Boulder metropolitan area and Colorado Front Range - Preliminary implications for Rocky Mountain National Park and interpolated deposition maps, Science of the total environment, 691, pp. 1027–1042. DOI:10.1016/j.scitotenv.2019.06.528
Go to article

Authors and Affiliations

Rajmund Michalski
1
ORCID: ORCID
Paulina Pecyna-Utylska
1
ORCID: ORCID

  1. Institute of Environmental Engineering, Polish Academy of Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

Due to the increased environmental awareness, green chemistry becomes an important element of environmental protection. Unfortunately, it generate specific environmental costs, which are related to the use of toxic chemical reagents and waste generation. The most frequently determined analytes include inorganic and organic anions and cations. The methods used so far for their analysis in water, sewage and various other types of samples are increasingly being replaced by ion chromatography methods. This paper presents the most important advantages and limitations of ion chromatography in the context of “green analytical chemistry.” The progress of ion chromatography in gradient and isocratic elution, capillary and multidimensional ion chromatography, as well as miniaturization and methods of sample preparation for analysis, which allow to classify this technique as green analytical chemistry, are described
Go to article

Authors and Affiliations

Rajmund Michalski
1
ORCID: ORCID
Paulina Pecyna-Utylska
1
ORCID: ORCID

  1. Institute of Environmental Engineering, Polish Academy of Sciences, Poland

This page uses 'cookies'. Learn more