Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

One of the main causes of road pavement distress are low temperatures, and hence the need to thoroughly study the low temperature performance of all bituminous materials used in road construction. The purpose of this studywas to determine the performance of alternative and conventional bituminous mixtures in the temperature range between –25˚C and –10˚C using for this purpose the Tensile Creep Test (TCT). The low-temperature performance data were evaluated using the Burgers model, a tool that is widely used for evaluation of bituminous mixtures. This research focuses on bridge paving mixtures. These included both conventional (mastic asphalt) and alternative (SMAMA) materials. It was established, based on the test results and their analysis, that low temperature performance of a bituminous mixture is influenced, in the first place, by the characteristics of the asphalt binder it contains. Furthermore, SMA-MA mixtures showed better low temperature performance than conventional, mastic asphalt type mixtures.
Go to article

Authors and Affiliations

Bartosz Budziński
1
ORCID: ORCID
Paweł Mieczkowski
1
ORCID: ORCID

  1. West Pomeranian University of Technology, Faculty of Civil and Environmental Engineering, Al. Piastów17, 70-310 Szczecin, Poland
Download PDF Download RIS Download Bibtex

Abstract

The physical properties determining the strength parameters of bituminous mixtures are strongly influenced by the processes of placement and compaction. The effectiveness of this process depends on the compactive effort and is directly related to the mixture temperature. This research focused on the assessment of compactibility of mixtures designed for reflective crack relief interlayers (RCRI) which, in most cases, are applied in thin layers. The materials analysed for compactibility in this research included AC – asphalt concrete, AC AF – asphalt concrete “anti-fatigue”, SMA – stone mastic asphalt and SMA-MA – stone mastic asphalt rich in bitumen mastic. The gyratory compactor method was used to determine the compaction slope K, the locking point LP and the compaction densification index CDI. All the tested mixtures were fine-graded, i.e., contained grains up to 8 mm in diameter, each mixed with a different type of bituminous binder. The values of CDI show a substantially greater input of energy required for compaction of high-polymer modified mixtures, as compared to mixtures of the same design, yet containing the 50/70 bitumen. Locking point analysis showed that SMA and SMA-MA mixtures attain 98% relative compaction before reaching the locking point at which the aggregate skeleton starts to resist further compaction. This is quite the opposite as with the AC and AC AF mixtures. Among the tested mixtures the best compaction behaviour was observed in the case of SMA-MA 8 50/70, and this over a wide range of working temperature (100–160C°) and pressures (150 kPa, 600 kPa). The design of the mixture SMA-MA as an anti-fatigue layer assumes an increase in the content of filler and binder, as compared to conventional SMA. This composition is bound to reduce the resistance to compaction, i.e., provide a better compaction behaviour as compared to a conventional SMA mixture.
Go to article

Authors and Affiliations

Oliwia Merska
1
ORCID: ORCID
Paweł Mieczkowski
1
ORCID: ORCID
Stanisław Majer
1
ORCID: ORCID

  1. West Pomeranian University of Technology, Faculty of Civil and Engineering, ul. Piastów 50A, 70-333 Szczecin, Poland

This page uses 'cookies'. Learn more