Search results

Filters

  • Journals
  • Date

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Malignant melanomas are the most deadly type of skin cancer, yet detected early have high chances of successful treatment. In the last twenty years, the interest in automatic recognition and classification of melanoma dynamically increased, partly because of appearing public datasets with dermatoscopic images of skin lesions. Automated computer-aided skin cancer detection in dermatoscopic images is a very challenging task due to uneven sizes of datasets, huge intra-class variation with small interclass variation, and the existence of many artifacts in the images. One of the most recognized methods of melanoma diagnosis is the ABCD method. In the paper, we propose an extended version of this method and an intelligent decision support system based on neural networks that uses its results in the form of hand-crafted features. Automatic determination of the skin features with the ABCD method is difficult due to the large diversity of images of various quality, the existence of hair, different markers and other obstacles. Therefore, it was necessary to apply advanced methods of pre-processing the images. The proposed system is an ensemble of ten neural networks working in parallel, and one network using their results to generate a final decision. This system structure enables to increase the efficiency of its operation by several percentage points compared with a single neural network. The proposed system is trained on over 5000 and tested afterwards on 200 skin moles. The presented system can be used as a decision support system for primary care physicians, as a system capable of self-examination of the skin with a dermatoscope and also as an important tool to improve biopsy decision making.

Go to article

Authors and Affiliations

Michał Grochowski
Agnieszka Mikołajczyk
Arkadiusz Kwasigroch
Download PDF Download RIS Download Bibtex

Abstract

In this paper the authors propose a decision support system for automatic blood smear analysis based on microscopic images. The images are pre-processed in order to remove irrelevant elements and to enhance the most important ones – the healthy blood cells (erythrocytes) and the pathologic ones (echinocytes). The separated blood cells are analysed in terms of their most important features by the eigenfaces method. The features are the basis for designing the neural network classifier, learned to distinguish between erythrocytes and echinocytes. As the result, the proposed system is able to analyse the smear blood images in a fully automatic way and to deliver information on the number and statistics of the red blood cells, both healthy and pathologic. The system was examined in two case studies, involving the canine and human blood, and then consulted with the experienced medicine specialists. The accuracy of classification of red blood cells into erythrocytes and echinocytes reaches 96%.

Go to article

Authors and Affiliations

Michał Grochowski
Michał Wąsowicz
Agnieszka Mikołajczyk
Mateusz Ficek
Marek Kulka

This page uses 'cookies'. Learn more