Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper attempts to conduct a comparative life cycle environmental analysis of alternative versions of a product that was manufactured with the use of additive technologies. The aim of the paper was to compare the environmental assessment of an additive-manufactured product using two approaches: a traditional one, based on the use of SimaPro software, and the authors’ own concept of a newly developed artificial intelligence (AI) based approach. The structure of the product was identical and the research experiments consisted in changing the materials used in additive manufacturing (from polylactic acid (PLA) to acrylonitrile butadiene styrene (ABS)). The effects of these changes on the environmental factors were observed and a direct comparison of the effects in the different factors was made. SimaPro software with implemented databases was used for the analysis. Missing information on the environmental impact of additive manufacturing of PLA and ABS parts was taken from the literature for the purpose of the study. The novelty of the work lies in the results of a developing concurrent approach based on AI. The results showed that the artificial intelligence approach can be an effective way to analyze life cycle assessment (LCA) even in such complex cases as a 3D printed medical exoskeleton. This approach, which is becoming increasingly useful as the complexity of manufactured products increases, will be developed in future studies.
Go to article

Authors and Affiliations

Ewa Dostatni
1
ORCID: ORCID
Anna Dudkowiak
1
ORCID: ORCID
Izabela Rojek
2
ORCID: ORCID
Dariusz Mikołajewski
2
ORCID: ORCID

  1. Institute of Material Technology, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
  2. Institute of Computer Science, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
Download PDF Download RIS Download Bibtex

Abstract

Reviewing the current state of knowledge on sustainable production, this paper opens the Special Section entitled “Sustainability in production in the context of Industry 4.0”. The fourth industrial revolution (Industry 4.0), which embodies a vision for the future system of manufacturing (production), focuses on how to use contemporary methods (i.e. computerization, robotization, automation, new business models, etc.) to integrate all manufacturing industry systems to achieve sustainability. The idea was introduced in 2011 by the German government to promote automation in manufacturing. This paper shows the state of the art in the application of modern methods in sustainable manufacturing in the context of Industry 4.0. The authors review the past and current state of knowledge in this regard and describe the known limitations, directions for further research, and industrial applications of the most promising ideas and technologies.
Go to article

Authors and Affiliations

Izabela Rojek
1
ORCID: ORCID
Ewa Dostatni
2
ORCID: ORCID
Dariusz Mikołajewski
1
ORCID: ORCID
Lucjan Pawłowski
3
ORCID: ORCID
Katarzyna M. Węgrzyn-Wolska
4
ORCID: ORCID

  1. Institute of Computer Science, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland
  2. Faculty of Mechanical Engineering, Poznan University of Technology, 60-965 Poznan, Poland
  3. Environmental Engineering Faculty, Lublin University of Technology, 20-618 Lublin, Poland
  4. EFREI Paris Pantheon Assas University, 30-32 Avenue de la République, 94800, Villejuif, France
Download PDF Download RIS Download Bibtex

Abstract

By reviewing the current state of the art, this paper opens a Special Section titled “The Internet of Things and AI-driven optimization in the Industry 4.0 paradigm”. The topics of this section are part of the broader issues of integration of IoT devices, cloud computing, big data analytics, and artificial intelligence to optimize industrial processes and increase efficiency. It also focuses on how to use modern methods (i.e. computerization, robotization, automation, machine learning, new business models, etc.) to integrate the entire manufacturing industry around current and future economic and social goals. The article presents the state of knowledge on the use of the Internet of Things and optimization based on artificial intelligence within the Industry 4.0 paradigm. The authors review the previous and current state of knowledge in this field and describe known opportunities, limitations, directions for further research, and industrial applications of the most promising ideas and technologies, considering technological, economic, and social opportunities.
Go to article

Authors and Affiliations

Dariusz Mikołajewski
1
ORCID: ORCID
Jacek M. Czerniak
1
ORCID: ORCID
Maciej Piechowiak
1
ORCID: ORCID
Katarzyna Węgrzyn-Wolska
2
ORCID: ORCID
Janusz Kacprzyk
3
ORCID: ORCID

  1. Faculty of Computer Science, Kazimierz Wielki University, Bydgoszcz, Poland
  2. EFREI Paris Pantheon Assas University, Paris, France
  3. Systems Research Institute, Polish Academy of Science, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The study aimed to develop a system supporting technological process planning for machining and 3D printing. Such a system should function similarly to the way human experts act in their fields of expertise and should be capable of gathering the necessary knowledge, analysing data, and drawing conclusions to solve problems. This could be done by utilising artificial intelligence (AI) methods available within such systems. The study proved the usefulness of AI methods and their significant effectiveness in supporting technological process planning. The purpose of this article is to show an intelligent system that includes knowledge, models, and procedures supporting the company’s employees as part of machining and 3D printing. Few works are combining these two types of processing. Nowadays, however, these two types of processing overlap each other into a common concept of hybrid processing. Therefore, in the opinion of the authors, such a comprehensive system is necessary. The system-embedded knowledge takes the form of neural networks, decision trees, and facts. The system is presented using the example of a real enterprise. The intelligent expert system is intended for process engineers who have not yet gathered sufficient experience in technological-process planning, or who have just begun their work in a given production enterprise and are not very familiar with its machinery and other means of production.
Go to article

Bibliography

  1.  T. Pereira, J.V. Kennedy, and J. Potgieter, “A comparison of traditional manufacturing vs additive manufacturing, the best method for the job”, Procedia Manuf. 30, 11–18 (2019).
  2.  S. Mirzababaei and S. Pasebani, “A Review on Binder Jet Additive Manufacturing of 316L Stainless Steel”, J. Manuf. Mater. Process 3, 82, 1–36 (2019).
  3.  J-P. Kruth, M.C. Leu, and T. Nakagawa, “Progress in Additive Manufacturing and Rapid Prototyping”, CIRP Ann. 47(2), 525–540 (1998).
  4.  J. Maszybrocka, B. Gapiński, M. Dworak, G. Skrabalak, and A. Stwora, “Modelling, manufacturability and compression properties of the CpTi grade 2 cellular lattice with radial gradient TPMS architecture”, Bull. Pol. Acad. Sci. Tech. Sci. 67(4), 719–727 (2019).
  5.  E. Talhi, J-C. Huet, V. Fortineau, and S. Lamouri, “A methodology for cloud manufacturing architecture in the context of industry 4.0”, Bull. Pol. Acad. Sci. Tech. Sci. 68(2), 271–284 (2020).
  6.  I. Rojek, D. Mikołajewski, P. Kotlarz, M. Macko, and J. Kopowski, “Intelligent System Supporting Technological Process Planning for Machining”, in: Machine Modelling and Simulations MMS 2020. Lecture Notes in Mechanical Engineering. Springer, Cham, (to be published).
  7.  W. Grzesik, “Hybrid machining processes. Definitions, generation rules and real industrial importance”, Mechanik 5–6, 338‒342 (2018), [in Polish].
  8.  C.F. Tan, V.K. Kher, and N Ismail, “An expert system carbide cutting tools selection system for CNC lathe machine”, Int. Rev. Mech. Eng. 6(7), 1402–1405 (2012).
  9.  I. Rojek, E. Dostatni, and A. Hamrol, “Ecodesign of Technological Processes with the Use of Decision Trees Method”, in International Joint Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding. SOCO 2017, CISIS 2017, ICEUTE 2017. Advances in Intelligent Systems and Computing, vol. 649, pp. 318–327, eds. H. Pérez García, J. Alfonso-Cendón, L. Sánchez González, H. Quintián and E. Corchado, Springer, Cham, 2018.
  10.  G. Halevi and K. Wang, “Knowledge based manufacturing system (KBMS)”, J. Intell. Manuf. 18(4), 467–474 (2007).
  11.  S. Butdee, Ch. Noomtong, and S. Tichkiewitch, “A Process Planning System with Feature Based Neural Network Search Strategy for Aluminum Extrusion Die Manufacturing”, Asian Int. J. Sci. Technol. Prod. Manuf. Eng. 2(1), 137–157 (2009).
  12.  I. Rojek, “Hybrid neural networks as prediction models”, in Artificial Intelligence and Soft Computing. Lecture Notes in Computer Science ICAISC 2010, vol. 6114, pp. 88–95, eds. L. Rutkowski, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, and J.M. Zurada, Springer, Berlin, Heidelberg, 2010.
  13.  D. Rajeev, D. Dinakaran, and S. Singh. “Artificial neural network based tool wear estimation on dry hard turning processes of aisi4140
  14. steel using coated carbide tool”, Bull. Pol. Acad. Sci. Tech. Sci. 65(4), 553–559 (2017).
  15.  I. Rojek, “Classifier Models in Intelligent CAPP Systems”, in Man-Machine Interactions. Advances in Intelligent and Soft Computing, vol. 59, pp. 311–319, eds. K.A. Cyran, S. Kozielski, J.F. Peters, U. Stańczyk, and A. Wakulicz-Deja, Springer, Berlin, Heidelberg, 2009.
  16.  S. Igari, F. Tanaka, and M. Onosato, “Customization of a Micro Process Planning System for an Actual Machine Tool based on Updating a Machining Database and Generating a Database-Oriented Planning Algorithm”, J. Trans. Inst. Syst. Control Inf. Eng. 26(3), 87–94 (2013).
  17.  I. Rojek and E. Dostatni, “Machine learning methods for optimal compatibility of materials in eco-design”, Bull. Pol. Acad. Sci. Tech. Sci. 68(2), 199–206 (2020).
  18.  M. Hazarika, S. Deb, U.S. Dixit, and J.P. Davim, “Fuzzy set-based set-up planning system with the ability for online learning”, Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 225(2), 247–263 (2011).
  19.  N. Guo and M.C. Leu, “Additive manufacturing: Technology, applications and research needs”, Front. Mech. Eng. 215–243 (2013).
  20.  J. Yang, Y. Chen, W. Huang, and Y. Li, “Survey on artificial intelligence for additive manufacturing”, in 23rd International Conference on Automation and Computing (ICAC), Huddersfield, 2017, pp. 1–6, doi: 10.23919/IConAC.2017.8082053.
  21.  I.J. Petrick and T.W. Simpson, “3D printing disrupts manufacturing: how economies of one create new rules of competition”, Res.-Technol. Manage. 56(6), 12–16 (2013).
  22.  B. Stucker, “Additive manufacturing technologies: Technology introduction and business implications”, in Frontiers of Engineering: Reports on Leading-Edge Engineering from the 2011 Symposium, pp. 19–21, National Academies Press: Washington, DC, USA, 2012.
  23.  Y. Wang, P. Zheng, and T. Peng, “Smart additive manufacturing: Current artificial intelligence-enabled methods and future perspectives”, Sci. China Technol. Sci. 1–12 (2020).
  24.  H. Chen, and Y.F. Zhao, “Process parameters optimization for improving surface quality and manufacturing accuracy of binder jetting additive manufacturing process”, Rapid Prototyp. J. 22, 527–538 (2016).
  25.  M.A. Kaleem and M. Khan, “Significance of Additive Manufacturing for Industry 4.0 With Introduction of Artificial Intelligence in Additive Manufacturing Regimes”, in 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 2020, pp. 152–156, doi: 10.1109/IBCAST47879.2020.9044574.
  26.  L. Meng, B. McWilliams, and W. Jarosinski, “Machine Learning in Additive Manufacturing” A Review. JOM 72, 2363–2377 (2020).
  27.  Z. Jin, Z. Zhang, and G.X. Gu, “Automated Real-Time Detection and Prediction of Interlayer Imperfections in Additive Manufacturing Processes Using Artificial Intelligence”, Adv. Intell. Syst. 2(1), 1900130(1–7) (2020).
  28.  K. Wasmer, C. Kenel, C. Leinenbach, and S.A. Shevchik, “In Situ and Real-Time Monitoring of Powder-Bed AM by Combining Acoustic Emission and Artificial Intelligence.”, in Industrializing Additive Manufacturing – Proceedings of Additive Manufacturing in Products and Applications – AMPA2017, pp. 200–209, eds. M. Meboldt and C. Klahn, Springer, Cham, 2018, https://doi.org/10.1007/978-3-319- 66866-6_20.
  29.  C. Wang, S Li, D Zeng, and X. Zhu, “An Artificial-intelligence/Statistics Solution to Quantify Material Distortion for Thermal Compensation in Additive Manufacturing”, Cornell University, arXiv:2005.09084v1 [cs.CE], 2020.
  30.  P. Hong-Seok and N. Dinh-Son, “AI-Based Optimization of Process Parameters in Selective Laser Melting”, in Advances in Manufacturing Technology XXXII, eds. P. Thorvald and K. Case, IOS Press, 2018, doi: 10.3233/978-1-61499-902-7-119.
  31.  J. Kopowski, D. Mikołajewski, M. Macko, and I. Rojek, “Bydgostian hand exoskeleton – own concept and the biomedical factors”, Bio- Algorithms and Med-Systems 15(1), 20190003 (2019).
  32.  J. Kopowski, I. Rojek, D. Mikołajewski, and M. Macko, “3D Printed Hand Exoskeleton – Own Concept”, in Advances in Manufacturing II. MANUFACTURING 2019. Lecture Notes in Mechanical Engineering, pp. 306‒298, J. Trojanowska, O. Ciszak, J. Machado, and I. Pavlenko, Springer, Cham, 2019, https://doi.org/10.1007/978-3-030-18715-6_25.
  33.  R. Tadeusiewicz, R. Chaki, and N. Chaki, “Exploring Neural Networks with C#”, CRC Press Taylor & Francis Group, Boca Raton, 2014.
  34.  L.A. Zadeh, “Fuzzy sets. Information and Control”, 8, pp. 338–353 (1965).
  35.  S. Jige Quan, J. Park, A. Economou, and S. Lee, “Artificial intelligence-aided design: Smart Design for sustainable city development,” Environment and Planning B 46(8), 1581‒1599 (2019).
Go to article

Authors and Affiliations

Izabela Rojek
1
ORCID: ORCID
Dariusz Mikołajewski
1
ORCID: ORCID
Piotr Kotlarz
1
ORCID: ORCID
Marek Macko
2
ORCID: ORCID
Jakub Kopowski
1 3
ORCID: ORCID

  1. Institute of Computer Science, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
  2. Faculty of Mechatronics, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
  3. Faculty of Psychology, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
Download PDF Download RIS Download Bibtex

Abstract

Artificial intelligence (AI) is changing many areas of technology in the public and private spheres, including the economy. This report reviews issues related to machine modelling and simulations concerning further development of mechanical devices and their control systems as part of novel projects under the Industry 4.0 paradigm. The challenges faced by the industry have generated novel technologies used in the construction of dynamic, intelligent, flexible and open applications, capable of working in real time environments. Thus, in an Industry 4.0 environment, the data generated by sensor networks requires AI/CI to apply close-to-real-time data analysis techniques. In this way industry can face both fresh opportunities and challenges, including predictive analysis using computer tools capable of detecting patterns in the data based on the same rules that can be used to formulate the prediction.
Go to article

Bibliography

  1.  Artificial intelligence quotient –2nd edition, Digital Poland Microsoft Foundation, 2019.
  2.  IoT in the Polish economy, Report of the working group for the Internet of Things at the Ministry of Digital Affairs, Ministry of Digital Affairs, 2019.
  3.  Towards the Industry 4.0, HBR Polska, ICAN, How to do IT, ASTOR, 2019.
  4.  Industry 4.0, The new industrial revolution, How Europe will succeed, Company Report Roland Berger, 2019.
  5.  S. Tay, L. Te Chuan, A. Aziati, and A. Nur Aizat “An Overview of Industry 4.0: Definition, Components, and Government Initiatives”, J. Adv. Res. Dyn. Control Syst. 10(14), 1379‒1387 (2018).
  6.  H. Kagermann, W. Wahlster, and H. Johannes, “Recommendations for Implementing the Strategic Initiative INDUSTRIE 4.0”, Forschungsunion, 2013.
  7.  J. Qin, Y. Liu, and R. Grosvenor, “Categorical Framework of Manufacturing for Industry 4.0 and Beyond”, Procedia CIRP 52, 173–178 (2016).
  8.  D. Gorecky, M. Schmitt, M. Loskyll, and D. Zühlke “Human-Machine-Interaction in the Industry 4.0 Era”, in Proc. 12th IEEE International Conference on Industrial Informatics, 2014, pp. 289–294.
  9.  Y. Liao, F. Deschamps, E.D. Freitas, and R. Loures, “Past, present and future of Industry 4.0 – a systematic literature review and research agenda proposal”, Int. J. Prod. Res. 55(12), 3609–3629 (2017)).
  10.  D. Mourtzis, “Simulation in the design and operation of manufacturing systems: state of the art and new trends”, Int. J. Prod. Res. 58(7), 1927‒1949 (2020), doi: 10.1080/00207543.2019.1636321.
  11.  E. Chlebus, CAx computer techniques in production engineering, WNT, Warsaw, 2000, [in Polish].
  12.  W. Paprocki, “The concept of Industry 4.0 and its application in the conditions of a market economy”, in Digitization of the economy and society. Opportunities and challenges for infrastructure sectors, pp. 39‒58, eds. J. Gajewski, W. Paprocki and J. Pieriegud, Research Institute for Market Economics – Gdansk Academy of Banking, Gdansk, 2016 [in Polish].
  13.  B. Denkena, J. Schmidt, and M. Krüger, “Data mining approach for knowledge-based process planning”, Procedia Technol. 15, 406‒415 (2014).
  14.  D. Trentesaux and A. Thomas, “Product-Driven Control: Concept, Literature Review and Future Trends”, in Orientation in Holonic and Multi Agent Manufacturing and Robotics, Studies in Computational Intelligence, vol. 472, pp. 135‒150, eds., T. Borangiu, A. Thomas, and D. Trentesaux, Springer, Heidelberg, 2013.
  15.  E. Uhlmann, E. Hohwieler, and M. Kraft, “Self-organizing production with distributed intelligence. Intelligent workpieces control their way through production”, Werkstattstechnik 103(2), 114‒117 (2013) [in German].
  16.  X. Xu, L. Wang, and S.T. Newman, “Computer-aided process planning –A critical review of recent developments and future trends”, Int. J. Comput. Integr. Manuf. 24(1), 1‒31 (2011).
  17.  U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “From Data Mining to Knowledge Discovery in Databases”, AI Magazine 17(3), 37‒54 (1996).
  18.  G. Köksal, I. Batmaz, and M.C. Testik, “A review of data mining applications for quality improvement in manufacturing industry”, Expert Syst. Appl. 38(10), 13448‒13467 (2011).
  19.  T. Sánchez López, D.C. Ranasinghe, B. Patkai, and D. McFarlane, “Taxonomy, technology and applications of smart objects”, Inf. Syst. Front. 13(2), 281‒300 (2009).
  20.  L. Wang, “Machine availability monitoring and machining process planning”, CIRP J. Manuf. Sci. Technol. 6(4), 263‒273 (2013).
  21.  S. Wang, X. Lu, X.X. Li, and W.D. Li, “A systematic approach of process planning and scheduling”, J. Clean Prod. 87(1), 914‒929 (2015).
  22.  V. Roblek, M. Meško, and A. Krapež, “A complex view of industry 4.0”, SAGE Open 6(2), 1–11 (2016).
  23.  X.G. Ming, J.Q. Yan, X.H. Wang, S.N. Li, W.F. Lu, Q.J. Peng, and Y.S. Ma, “Collaborative Process Planning and Manufacturing in Product Lifecycle Management”, Comput. Ind. 59(2‒3), 154‒166 (2008).
  24.  C.M. Gonzalez, “The future of artificial Intelligence domination”, Mechanical Engineering, The Magazine of ASME 8, 2020.
  25.  O. de Weck, D. Reed, S. Sarma, and M. Schmidt, Trends in Advanced Manufacturing Technology Research, MIT, 2013.
  26.  J. Nukeaw and W. Pecharpa, Advances in Material Science and Technology, vol. 802, TTP, 2013.
  27.  J. Zhou, “Digitalization and intelligentization of manufacturing industry”, Adv. Manuf. l(1), 1–7 (2013).
  28.  G. Lanza, B. Haefner, and A. Kraemer, “Optimization of selective assembly and adaptive manufacturing by means of cyber-physical system based matching”, CIRP Ann-Manuf. Technol.64(1), 399‒402 (2015).
  29.  L. Monostori, “Cyber-physical Production Systems: Roots, Expectations and R&D Challenges”, Procedia CIRP 17, 9‒13 (2014).
  30.  J. Becker, R. Knackstedt, and J. Pöppelbuß, “Developing Maturity Models for IT Management: A Procedure Model and its Application”, Bus. Inf. Syst. Eng. 1(3), 213‒222 (2009).
  31.  R. Gao, L. Wang, R. Teti, D. Dornfeld, S. Kumara, M. Mori, and M. Helu, “Cloud-enabled prognosis for manufacturing” , CIRP Ann- Manuf. Technol.64(2), 749‒772 (2015).
  32.  R. Berger, “INDUSTRY 4.0 – The new industrial revolution”, [Online]. Available: www.rolandberger.com [Accessed: 21. Dec. 2015]
  33.  G. Schuh, T. Potente, R. Varandani, and T. Schmitz, “Global Footprint Design based on genetic algorithms – An ‘Industry 4.0’ perspective”, CIRP Ann-Manuf. Technol.63(1), 433‒436 (2014).
  34.  M. Kohlegger, R. Maier, and S. Thalmann, “Understanding Maturity Models Results of a structured Content Analysis”, presented at The 9th International Conference on Knowledge Management and Knowledge Technologies (IKNOW ‘09), Graz, Austria, 2009.
  35.  K. Lichtblau, V. Stich, R. Bertenrath, M. Blum, M. Bleider, A. Millack, K. Schmitt, E. Schmitz, and M. Schröter, IMPULS – Industrie 4.0- Readiness, Impuls-Stiftung des VDMA, Aachen-Köln, 2015.
  36.  E.W. Ngai, D.C.K. Chau, J.K.L. Poon, and C.K.M. To, “Energy and utility management maturity model for sustainable manufacturing process”, Int. J. Prod. Econ. 146(2), 453–464 (2013).
  37.  D.C.A. Pigosso, H. Rozenfeld, and T.C. McAloone, “Ecodesign maturi-ty model: a management framework to support ecodesign implementation into manufacturing companies”, J. Clean Prod.59, 160‒173 (2013).
  38.  M.A. Maasouman and K. Demirli, “Assessment of Lean Maturity Level in Manufacturing Cells”, IFAC-PapersOnLine 48(3), 1876‒1881 (2015).
  39.  M. Pérez-Lara et al., “Vertical and horizontal integration systems in Industry 4.0”, Wireless Netw. 26, 4767–4775 (2020).
  40.  A.C. Pereira, and F. Romero, “A review of the meanings and the implications of the Industry 4.0 concept”, Procedia Manuf.13, 1206‒1214 (2017).
  41.  A. Schumacher, S. Erolb, and W. Sihna, “A maturity model for assessing Industry 4.0 readiness and maturity of manufacturing enterprises”, Procedia CIRP 52,161‒166 (2016).
  42.  D.M. Gligor and M.C. Holcomb, “Understanding the role of logistics capabilities in achieving supply chain agility: a systematic literature review”, Supp. Chain Manag. 17(4), 438‒453 (2012).
  43.  J. Schlechtendahl, M. Keinert, F. Kretschmer, A. Lechler, and A. Verl, “Making existing production systems Industry 4.0-ready: Holistic approach to the integration of existing production systems in Industry 4.0 environments”, Prod. Eng 91(1), 143 (2014).
  44.  U. Dombrowski and T. Wagner, “Mental strain as field of action in the 4th industrial revolution”, Procedia CIRP 17, 100–105 (2014).
  45.  E. Fielt, “Conceptualising business models: Definitions, frameworks and classifications”, J. Bus. Mod. 1(1), 85 (2013).
  46.  B. Schumacher, S. Erol, and W. Sihn, “A maturity model for assessing Industry 4.0 readiness and maturity of manufacturing enterprises”, Procedia CIRP 52, 161 (2016).
  47.  J.A. Saucedo-Martinez, M. Perez-Lara, J.A. Marmolejo-Saucedo, T.E. Salais-Fierro, and P. Vasant, “Industry 4.0 framework for management and operations: A review”, J. Ambient Intell. Humaniz. Comput. 9, 789–801 (2018).
  48.  B. Ślusarczyk, “Industry 4.0: are we ready?”, Pol. J. Manag. Stud. 17(1), 232‒248 (2018).
  49.  S.A. Abbas, “Entrepreneurship and information technology businesses in economic crisis”, Entrep. Sustain. Issues 5(3), 682‒692 (2018).
  50.  F. Baena, A. Guarin, J. Mora, J. Sauza, and S. Retat, “Learning Factory: The Path to Industry 4.0”, Procedia Manuf. 9, 73‒80 (2017).
  51.  J.K. Allen, S. Commuri, R. Jiao, J. Milisavljevic-Syed, F. Mistree, J. Panchal, D. Schaefer, and W. Chen, “Design Engineering in the Age of Industry 4.0”, J. Mech. Des. 142(8) 088001 (2020).
  52.  T.D. Oesterreich and F. Teuteberg, “Understanding the implications of digitization and automation in the context of Industry 4.0: A triangulation approach and elements of a research agenda for the construction industry”, Comput. Ind. 83, 121‒139 (2016).
  53.  J. Oláh, G. Karmazin, K. Pető, and J. Popp, “Information technology developments of logistics service providers in Hungary”, Int. J. Logist. Res. Appl. 21(3), 1‒13 (2017).
  54.  R. Krishnamurthi, A. Kumar, “Modeling and Simulation for Industry 4.0”, in: A Roadmap to Industry 4.0: Smart Production, Sharp Business and Sustainable Development, eds., A. Nayyar, A. Kumar, Springer, 2019.
  55.  B. Rodič, “Industry 4.0 and the New Simulation Modelling Paradigm”, Organizacija 50(3), 193–207 (2017).
  56.  I. Sittón Candanedo, E. Hernández Nieves, S. Rodríguez González, M.T. Santos Martín, and A. González Briones, “Machine learning predictive model for Industry 4.0”, in Knowledge Management in Organizations Project: IOTEC – Development of Technological Capabilities in the industrial Application of the Internet of Things, 13th International Conference KMO, Žilina, Slovakia, pp 501‒510, 2018, doi: 10.1007/978-3-319-95204-8.
  57.  I. Rojek and E. Dostatni, “Machine learning methods for optimal compatibility of materials in ecodesign”, Bull. Pol. Acad. Sci. Tech. Sci. 68(2), 199‒206 (2020).
  58.  I. Rojek, “Classifier Models in Intelligent CAPP Systems”, in Man-Machine Interactions. Advances in Intelligent and Soft Computing, vol. 59, pp. 311–319, Eds., K.A. Cyran, S. Kozielski, J.F. Peters, U. Stańczyk, and A. Wakulicz-Deja, Springer, Berlin, Heidelberg, 2009.
  59.  I. Rojek and J. Studzinski, “Detection and Localization of Water Leaks in Water Nets Supported by an ICT System with Artificial Intelligence Methods as a Way Forward for Smart Cities”, Sustainability 11(2), 518 (2019).
  60.  J. Kopowski, I. Rojek, D. Mikolajewski, and M. Macko, “3D Printed Hand Exoskeleton – Own Concept”, in Advances in Manufacturing II. MANUFACTURING 2019. Lecture Notes in Mechanical Engineering, pp. 298‒306, Eds., J. Trojanowska, O. Ciszak, J. Machado, and I. Pavlenko, Springer, Cham, 2019, https://doi.org/10.1007/978-3-030-18715-6_25.
  61.  W. Żagan, S. Zalewski, S. Słomiński, and K. Kubiak, “Methods for designing and simulating optical systems for luminaires”, Bull. Pol. Acad. Sci. Tech. Sci. 68(4), 739‒750 (2020).
  62.  M. Gad-El-Hak, “Coherent structures and flow control: genesis and prospect”, Bull. Pol. Acad. Sci. Tech. Sci. 67(3), 411‒444 (2019).
  63.  Ch. Cimini, G. Pezzotta, R. Pinto, and S. Cavalieri, “Industry 4.0 technologies impacts in the manufacturing and supply chain landscape: an overview”, in Service Orientation in Holonic and Multi-Agent Manufacturing. SOHOMA 2018. Studies in Computational Intelligence, vol. 803, pp. 109‒120, Eds., T. Borangiu, D. Trentesaux, A. Thomas, and S. Cavalieri, Springer, Cham, 2019 doi: 10.1007/978-3-030- 03003-2_8.
  64.  J. Flizikowski and M. Macko, “Competitive design of shredder for plastic in recycling”, in Proc. 5th International Symposium on Tools and Methods of Competitive Engineering, Lausanne, Switzerland, 2004, vol. 1‒2, pp. 1147‒1148.
  65.  J. Flizikowski and M. Macko, J. Czerniak, A. Mroziński “Implementation of genetic algorithms into development of mechatronic multi- edge’s grinder design”, in Proc. of ASME International Mechanical Engineering Congress and Exposition (IMECE), Denver, 2012, vol. 7, pp. 1227‒1235.
  66. M. Macko, A. Mroziński, and A. Prentki “Simulations CAE of wood pellet machine”, in MATEC Web of Conferences, 2019, vol. 254, art. no. 02028.
  67.  A. Napoleone, M. Macchi, and A. Pozzetti, “A review on the characteristics of cyber-physical systems for the future smart factories”, J. Manuf. Syst. 54, 305‒335 (2020).
  68.  L. Monostori, “Cyber-physical production systems: roots, expectations and R&D challenges”, Procedia CIRP 17, 9‒13 (2014).
  69.  K.D. Thoben, S. Wiesner, and T. Wuest, “Industrie 4.0 and smart manufacturing – a review of research issues and application examples”. Int. J. Autom. Technol. 11, 4‒16 (2017).
  70.  M. Garetti, L. Fumagalli, and E. Negri, “Role of ontologies for CPS implementation in manufacturing”, Manag Prod Eng Rev 6, 26‒32 (2015).
  71.  L. Shi, G. Guo, X. Song, “Multi-agent based dynamic scheduling optimisation of the sustainable hybrid flow shop in a ubiquitous environment”, Int. J. Prod. Res. 59(2), 576‒597 (2021).
  72.  M. Thürer, H. Zhang, M. Stevenson, F. Costa, and L. Ma, “Worker assignment in dual resource constrained assembly job shops with worker heterogeneity: an assessment by simulation”, Int. J. Prod. Res. 58, 6336‒6349 (2020).
  73.  C. Wang, G. Zhou, and Z. Zhu, “Service perspective based production control system for smart job shop under industry 4.0”, Robot. Comput.-Integr. Manuf. 65, 101954 (2020).
  74.  W. Polini and A. Corrado, “Digital twin of composite assembly manufacturing process”, Int. J. Prod. Res. 58, 5238‒5252 (2020).
  75.  D. Mourtzis, J. Angelopoulos, and G. Dimitrakopoulos, “Design and development of a flexible manufacturing cell in the concept of learning factory paradigm for the education of generation 4.0 engineers”, Procedia Manuf. 45, 361‒366 (2020).
  76.  Q. Demlehner and S. Laumer, “Why Context Matters: Explaining the Digital Transformation of the Manufacturing Industry and the Role of the Industry’s Characteristics in It”, Pac. Asia J. Assoc. Inf. Syst. 12(3), 3 (2020).
  77.  G. Genta, M. Galetto, and F. Franceschini, “Inspection procedures in manufacturing processes: recent studies and research perspectives”, Int. J. Prod. Res. 58, 4767‒4788 (2020).
  78.  D. Mourtzis, V. Siatras, and J. Angelopoulos, “Real-Time Remote Maintenance Support Based on Augmented Reality (AR)”, Appl. Sci. 10(5), 1855 (2020).
  79.  R. Davidson, “Cyber-Physical Production Networks, Artificial Intelligence-based Decision-Making Algorithms, and Big Data-driven Innovation in Industry 4.0-based Manufacturing Systems”, Econ. Manag. Financ. Mark. 15(3), 16‒22 (2020).
  80.  D. Mourtzis, G. Synodinos, J. Angelopoulos, and N. Panopoulos, “An augmented reality application for robotic cell customization”, Procedia CIRP 90, 654‒659 (2020).
  81.  T. White, I. Grecu, and G. Grecu, “Digitized Mass Production, Real-Time Process Monitoring, and Big Data Analytics Systems in Sustainable Smart Manufacturing”, J. Self-Gov. Manag. Econ.8(3), 37‒43 (2020).
  82.  D. Mourtzis, “Adaptive Scheduling in the Era of Cloud Manufacturing”, in Scheduling in Industry 4.0 and Cloud Manufacturing, International Series in Operations Research & Management Science, vol. 289, pp. 61‒85, Eds., B. Sokolov, D. Ivanov, and A. Dolgui, Springer, Cham, 2020 https://doi.org/10.1007/978-3-030-43177-8_4.
  83.  N. Hangst, S. Junk, and T. Wendt, “Design of an Additively Manufactured Customized Gripper System for Human Robot Collaboration”, in Industrializing Additive Manufacturing. AMPA, pp. 415‒425, Eds., M. Meboldt and C. Klahn, Springer, Cham, 2021, http://doi-org-443. webvpn.fjmu.edu.cn/10.1007/978-3-030-54334-1_29.
  84.  Y. Tirupachuri, “Enabling Human-Robot Collaboration via Holistic Human Perception and Partner-Aware Control”, arXiv-CS-Robotics, 2020, doi: arxiv.org/abs/2004.10847v1
  85.  W. de Paula Ferreira, F. Armellini, and L.A. de Santa-Eulalia, “Simulation in industry 4.0: A state-of-the-art review”, Comput. Ind. Eng. 149, 106868 (2020).
  86.  R. Cioffi, M. Travaglioni, G. Piscitelli, A. Petrillo, and A. Parmentola, “Smart Manufacturing Systems and Applied Industrial Technologies for a Sustainable Industry: A Systematic Literature Review”, Appl. Sci. 10(8), 2897 (2020).
  87.  G. Li, S. Yang, Z. Xu, J. Wang, Z. Ren, and G. Li, “Resource allocation methodology based on object-oriented discrete event simulation: A production logistics system case study”, CIRP J. Manuf. Sci. Technol. 31, 394‒405 (2020).
  88.  R. Davis, M. Vochozka, J. Vrbka, and O. Neguriţă, “Industrial Artificial Intelligence, Smart Connected Sensors, and Big Data-driven Decision-Making Processes in Internet of Things-based Real-Time Production Logistics”, Econ. Manag. Financ. Mark.15(3), 9‒15 (2020).
  89.  C.H.D. Santos, J.A. de Queiroz, F. Leal, and J.A.B. Montevechi, “Use of simulation in the industry 4.0 context: Creation of a Digital Twin to optimise decision making on non-automated process”, J. Simul.(2020) doi: 10.1080/17477778.2020.1811172.
  90.  H. Sun, G. Pedrielli, G. Zhao, C. Zhou, W. Xu, and R. Pan, “Cyber coordinated simulation for distributed multi-stage additive manufacturing systems”, J. Manuf. Syst. 57, 61‒71 (2020).
  91.  G. Chryssolouris, N. Papakostas, and D. Mavrikios, “A Perspective on Manufacturing Strategy: Produce More with Less”, CIRP J. Manuf. Sci. Technol. 1(1), 45–52 (2008), doi: 10.1016/j.cirpj.2008.06.008.
  92.  D. Mourtzis, M. Doukas, and D. Bernidaki, “Simulation in Manufacturing: Review and Challenges”, Procedia CIRP 25, 213–229 (2014), doi: 10.1016/j.procir.2014.10.032.
  93.  T. Burczyński, W. Kuś, W. Beluch, A. Długosz, A. Poteralski, and M. Szczepanik, Intelligent computing in optimal design, Springer, 2020.
Go to article

Authors and Affiliations

Izabela Rojek
1
ORCID: ORCID
Marek Macko
2
ORCID: ORCID
Dariusz Mikołajewski
1
ORCID: ORCID
Milan Sága
3
ORCID: ORCID
Tadeusz Burczyński
4
ORCID: ORCID

  1. Institute of Computer Science, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
  2. Faculty of Mechatronics, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
  3. Department of Applied Mechanics, Faculty of Mechanical Engineering, University of Zilina, 010 26 Zilina, Slovakia
  4. Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B; 02-106 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Bibliography

  1.  Towards the Industry 4.0, HBR Polska, ICAN, How to do IT, ASTOR, 2019.
  2.  INDUSTRY 4.0, The new industrial revolution, How Europe will succeed, Company Report Roland Berger, 2019.
  3.  D. Mourtzis, “Simulation in the design and operation of manufacturing systems: state of the art and new trends”, Int. J. Prod. Res. 58(7), 1927–1949 (2020), doi: 10.1080/00207543.2019.1636321.
  4.  C.M. Gonzalez, “The future of artificial Intelligence domination”, Mechanical Engineering, The Magazine of ASME 8, 2020.
  5.  I. Rojek and E. Dostatni, “Machine learning methods for optimal compatibility of materials in ecodesign”, Bull. Pol. Acad. Sci. Tech. Sci. 68(2), 199‒206 (2020), doi: 10.24425/bpasts.2020.131848.
  6.  T. Burczyński, W. Kuś, W. Beluch, A. Długosz, A. Poteralski, and M. Szczepanik, Intelligent computing in optimal design, Springer, 2020.
  7.  I. Rojek, M. Macko, D. Mikołajewski, M. Saga, and T. Burczyński, ”Modern methods in the field of machine modelling and simulation as a research and practical issue related to Industry 4.0”, Bull. Pol. Acad. Sci. Tech. Sci. 69(2), e136717 (2021), doi: 10.24425/ bpasts.2021.136717.
  8.  D. Ondrušova, I. Labaj, M. Pajtasova, J. Vrskova, S. Bozekova, A. Feriancova, and P. Skalkova, “Targeted modification of the composition of polymer systems for industrial applications”, Bull. Pol. Acad. Sci. Tech. Sci. 69(2), e136721 (2021), doi: 10.24425/bpasts.2021.136721.
  9.  R. Regulski, D. Czarnecka-Komorowska, C. Jedryczka, D. Sędziak, D. Rybarczyk, K. Netter, M. Barański, and M. Barczewski, ”Automated test bench for research on electrostatic separation in plastic recycling application”, Bull. Pol. Acad. Sci. Tech. Sci. 69(2), e136719 (2021), doi: 10.24425/bpasts.2021.136719.
  10.  I. Grega, R. Grega, and J. Homisin, “Frequency of free vibration in systems with power-law restoring force”, Bull. Pol. Acad. Sci. Tech. Sci. 69(2), e136723 (2021), doi: 10.24425/bpasts.2021.136723.
  11.  D. Varecha, R. Kohár, and M. Lukáč, “Theoretical Study of Heat Conduction in the Multi-Disc Brake Integrated into the Drive Wheel AGV During Braking”, Bull. Pol. Acad. Sci. Tech. Sci. 69(2), e136718 (2021), doi: 10.24425/bpasts.2021.136718.
  12.  D. Czarnecka-Komorowska, K. Bryll, E. Kostecka, K. Gawdzińska, E. Piesowicz, and M. Tomasik, ”The composting of PLA/HNT biodegradable composites as an ecoapproach to the sustainability”, Bull. Pol. Acad. Sci. Tech. Sci. 69(2), e136720 (2021), doi: 10.24425/ bpasts.2021.136720.
  13.  I. Rojek, D. Mikołajewski, P. Kotlarz, M. Macko, and J. Kopowski, ”Intelligent System Supporting Technological Process Planning for Machining and 3D Printing”, Bull. Pol. Acad. Sci. Tech. Sci. 69(2), e136722 (2021), doi: 10.24425/bpasts.2021.136722.
  14.  K. Kazimierska-Drobny, “PVA hydrogel deformations in response to changes in temperature or pH”, Bull. Pol. Acad. Sci. Tech. Sci. 69(2), e136724 (2021), doi: 10.24425/bpasts.2021.136724.
  15.  S. Hrcek, R. Kohar, and J. Steininger, “Axial stiffness for large-scale ball slewing rings with four-point contact”, Bull. Pol. Acad. Sci. Tech. Sci. 69(2), e136725 (2021), doi: 10.24425/bpasts.2021.136725.
  16.  R. Drelich, M. Rosiak, and M. Pakula, “Application of the non-contact ultrasonic method in the air to study fiber-cement corrugated boards”, Bull. Pol. Acad. Sci. Tech. Sci. 69(2), e136740 (2021), doi: 10.24425/bpasts.2021.136740.
Go to article

Authors and Affiliations

Marek Macko
1
ORCID: ORCID
Izabela Rojek
2
ORCID: ORCID
Milan Sága
3
ORCID: ORCID
Tadeusz Burczyński
4
ORCID: ORCID
Dariusz Mikołajewski
2
ORCID: ORCID

  1. Department of Mechatronics, Kazimierz Wielki University, ul. Kopernika 1, 85-074 Bydgoszcz, Poland
  2. Institute of Computer Science, Kazimierz Wielki University, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
  3. Department of Applied Mechanics, Faculty of Mechanical Engineering, University of Žilina, 010 26 Žilina, Slovakia
  4. Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Computational intelligence (CI) can adopt/optimize important principles in the workflow of 3D printing. This article aims to examine to what extent the current possibilities for using CI in the development of 3D printing and reverse engineering are being used, and where there are still reserves in this area. Methodology: A literature review is followed by own research on CI-based solutions. Results: Two ANNs solving the most common problems are presented. Conclusions: CI can effectively support 3D printing and reverse engineering especially during the transition to Industry 4.0. Wider implementation of CI solutions can accelerate and integrate the development of innovative technologies based on 3D scanning, 3D printing, and reverse engineering. Analyzing data, gathering experience, and transforming it into knowledge can be done faster and more efficiently, but requires a conscious application and proper targeting.
Go to article

Authors and Affiliations

Izabela Rojek
1
ORCID: ORCID
Dariusz Mikołajewski
1
ORCID: ORCID
Joanna Nowak
2
ORCID: ORCID
Zbigniew Szczepański
2
ORCID: ORCID
Marek Macko
2
ORCID: ORCID

  1. Institute of Computer Science, Kazimierz Wielki University, Bydgoszcz, Poland
  2. Faculty of Mechatronics, Kazimierz Wielki University, Bydgoszcz, Poland

Authors and Affiliations

Dariusz Mikołajewski
1
ORCID: ORCID
Jacek M. Czerniak
1
ORCID: ORCID
Maciej Piechowiak
1
ORCID: ORCID
Katarzyna Węgrzyn-Wolska
2
ORCID: ORCID
Janusz Kacprzyk
3
ORCID: ORCID

  1. Kazimierz Wielki University, Bydgoszcz, Poland
  2. EFREI Panthéon-Assas University Paris II, France
  3. Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland

This page uses 'cookies'. Learn more