Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper discussed the effect of the addition of silica fume (2 wt.% and 4 wt.%) and alumina (2 wt.% and 4 wt.%) on the properties of fly ash geopolymer concrete. The fly ash geopolymer concrete achieved the highest 28-day compressive strength with 2 wt.% of silica fume (39 MPa) and 4 wt.% of alumina (41 MPa). The addition of 2 wt.% of silica fume increased the compressive strength by 105% with respect to the reference geopolymer (without additive). On the other hand, the compressive strength surged by 115% with 4 wt.% of alumina compared to the reference geopolymer. The addition of additives improved the compactness of the geopolymer matrix according to the morphology analysis.
Go to article

Authors and Affiliations

Fong Sue Min
1
Heah Cheng Yong
1 2
ORCID: ORCID
Liew Yun Ming
1 3
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1 3
ORCID: ORCID
Hasniyati Md Razi
4
Foo Wah Low
5
Ng Hui-Teng
1 2
Ng Yong-Sing
1 2

  1. Centre of Excellence Geopolymer and Green Technology (CEGeoGTech), Universiti Malaysia Perlis (UniMAP), 01000 Perlis, Malaysia
  2. Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600 Perlis, Malaysia
  3. Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), 01000 Perlis, Malaysia
  4. Reactor Technology Center, Technical Support Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Malaysia
  5. Department of Electrical & Electronic Engineering, Lee Kong Chian Faculty of Engineering & Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, 43000 Kajang, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

The density, compressive strength, and thermal insulation properties of fly ash geopolymer paste are reported. Novel insulation material of glass bubble was used as a replacement of fly ash binder to significantly enhance the mechanical and thermal properties compared to the geopolymer paste. The results showed that the density and compressive strength of 50% glass bubble was 1.45 g/cm3 and 42.5 MPa, respectively, meeting the standard requirement for structural concrete. Meanwhile, the compatibility of 50% glass bubbles tested showed that the thermal conductivity (0.898 W/mK), specific heat (2.141 MJ/m3K), and thermal diffusivity (0.572 mm2/s) in meeting the same requirement. The improvement of thermal insulation properties revealed the potential use of glass bubbles as an insulation material in construction material.
Go to article

Authors and Affiliations

Noor Fifinatasha Shahedan
1
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1 2
ORCID: ORCID
Norsuria Mahmed
1 2
ORCID: ORCID
Liew Yun Ming
1 2
ORCID: ORCID
Shayfull Zamree Abd Rahim
1
ORCID: ORCID
Ikmal Hakem A Aziz
1
ORCID: ORCID
Aeslina Abdul Kadir
3
ORCID: ORCID
Andrei Victor Sandu
4
ORCID: ORCID
Mohd Fathullah Ghazali
1
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolyme & Green Technology (CEGeoGTech), Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Perlis, Malaysia
  3. Universiti Tun Hussein Onn Malaysia, Faculty of Civil and Environmental Engineering, Johor, Malaysia
  4. Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iasi, Iasi, Romania

This page uses 'cookies'. Learn more