Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In order for the working status of the aluminum alloyed hydraulic valve body to be controlled in actual conditions, a new friction and wear

design device was designed for the cast iron and aluminum alloyed valve bodies comparison under the same conditions. The results

displayed that: (1) The oil leakage of the aluminum alloyed hydraulic valve body was higher than the corresponding oil leakage of the iron

body during the initial running stage. Besides during a later running stage, the oil leakage of the aluminum alloyed body was lower than

corresponding oil leakage of the iron body; (2) The actual oil leakage of different materials consisted of two parts: the foundation leakage

that was the leakage of the valve without wear and wear leakage that was caused by the worn valve body; (3) The aluminum alloyed valve

could rely on the dust filling furrow and melting mechanism that led the body surface to retain dynamic balance, resulting in the valve

leakage preservation at a low level. The aluminum alloy modified valve body can meet the requirements of hydraulic leakage under

pressure, possibly constituting this alloy suitable for hydraulic valve body manufacturing.

Go to article

Authors and Affiliations

Li Rong
Chen Lunjun
Su Ming
Zeng Qi
Liu Yong
Download PDF Download RIS Download Bibtex

Abstract

In order to study the effects of various gating systems on the casting of a complex aluminum alloyed multi-way valve body, both software simulation analysis and optimization were carried out. Following, the aluminum alloyed multi-way valve body was cast to check the pouring of the aluminum alloy valve body. The computer simulation results demonstrated that compared to the single side casting mode, the casting method of both sides of the gating system would reduce the filling of the external gas, while the air contact time would be lower. Adversely, due to the pouring on both sides, the melt cannot reach at the same time, leading to the liquid metal speed into the cavity to differ, which affected the liquid metal filling stability. The riser unreasonable setting led to the solidification time extension, resulting in a high amount of casting defects during solidification. Also, both gating systems led the entire casting inconsequential solidification. To overcome the latter problems, a straight gate was set at the middle pouring and the horizontal gate diversion occurred on both sides of pouring, which could provide better casting results for the aluminum alloyed multi-valve body.
Go to article

Authors and Affiliations

Rong Li
Lunjun Chenb
Ming Su
Qi Zeng
Yong Liu
Heng Wang
Download PDF Download RIS Download Bibtex

Abstract

Aiming at the problems of delay and couple in the sintering temperature control system of lithium batteries, a fuzzy neural network controller that can solve complex nonlinear temperature control is designed in this paper. The influence of heating voltage, air inlet speed and air inlet volume on the control of temperature of lithium battery sintering is analyzed, and a fuzzy control system by using MATLAB toolbox is established. And on this basis, a fuzzy neural network controller is designed, and then a PID control system and a fuzzy neural network control system are established through SIMULINK. The simulation shows that the response time of the fuzzy neural network control system compared with the PID control system is shortened by 24s, the system stability adjustment time is shortened by 160s, and the maximum overshoot is reduced by 6.1%. The research results show that the fuzzy neural network control system can not only realize the adjustment of lithium battery sintering temperature control faster, but also has strong adaptability, fault tolerance and anti-interference ability.
Go to article

Bibliography

[1] Li, H.S., Miao, Q. & Zhou, R.M. (2014). Research on control algorithm of ceramic kiln temperature control system. Journal of Wuhan University of Technology. 36(10), 135-139. DOI: 10.3963/j.issn.1671-4431.2014.10.024.
[2] Zhu, D.Q. & Jiang, K.R. (2009). Design and simulation of fuzzy neural network controller for drying process. Journal of System Simulation. 21(15), 4768-4771. DOI: 10.16182/j.cnki.joss.2009.15.079.
[3] Zhang, Z.M., Zhang, J.Y. & Feng, X.G. (2019). Design of hot blast stove temperature control system based on RBF neural network tuning. Journal of Hebei University of Science and Technology. 40(06), 503-511. DOI: 10.7535/hbkd.2019yx06007.
[4] Bai, G.Z. & Yu, J.H. (2016). PID parameter self-tuning based on improved fuzzy neural network. Computer Application Research. 33(11), 3358-3363+3368. DOI: 10.3969/j.issn.1001-3695.2016.11.035.
[5] Li, C.L. & Huang, C.Z. (2010). Design of temperature control system based on fuzzy neural network. Microcomputer Information. 26(07), 75-76+98. DOI: 10.3969/j.issn.2095-6835.2010.07.031.
[6] Li, G.Q., Tong, S.H. & Lu, L.X. (2013). Analysis of the temperature field in a continuous sintering furnace for solar cells. Computer Simulation. 30(01), 188-192+218. DOI: 10.3969/j.issn.1006-9348.2013.01.043.
[7] Huang, B., Xie, G.J., Liang, W.S. & Zhang, J.W. (2018). Application of heating furnace temperature control system based on hybrid fuzzy PID. Electric Drive. 48(02), 43-46. DOI: 10.19457/j.1001-2095.20180208.
[8] Zhou, G.L., Peng, Y.F. & Dong, H.S. (2007). Design of adaptive fuzzy PID controller based on T-S model. Industrial Instrumentation and Automation. 2, 22-25. DOI: CNKI: SUN: GYZD.0.2007-02-005.
[9] Tan, M., Cheng, C.H. & Lu, C. (2006). Research on the temperature control system of vacuum sintering furnace based on neural network. Measurement and Control Technology. 2, 31-32+53. DOI: 10.19708/j.ckjs.2006.02.010.
[10] Wang, J.P. & Ku, M.S. (2010). Application of FNN on atmospheric heating furnace of distillation unit. Computer Measurement and Control. 18(11), 2649-2651. DOI: 10.16526/j.cnki.11-4762/tp.2010.11.003. [11] Chen, B.F., Yin, P.L. & Ma, L. (2010). Research on temperature control system based on fuzzy neural network. Computer and Digital Engineering. 38(07), 54-57. DOI: 10.3969/j.issn.1672-9722.2010.07.016.
[12] Li, M.H. & Li, Z.Q. (2012). Research on Decoupling Control Strategy of Injection Molding Machine Barrel Temperature Based on Neural Network. Ceramics. 4, 17-19. DOI: 10.19397/j.cnki.ceramics.2012.04.004.
[13] Hu, Y.N. & Ma, W.M. (2017). Research and application of paper quantitative moisture control strategy based on FNN decoupling. China Paper. 36(07), 48-53. DOI: 10.11980/j.issn.0254-508X.2017.07.009. [14] Zhang, L., Zhang, J.C., Han, H.G. & Qiao, J.F. (2020). Process control of biochemical phosphorus removal in sewage treatment based on fuzzy neural network. CIESC Journal. 71(03). 1217-1225. DOI: 10.11949/0438-1157.20191514.
[15] Tao, X.M., Luo, L. & Liu, Z.G. (2015). Research and simulation of injection molding machine barrel temperature control algorithm based on segmented PID. Plastics. 44(03), 68-70. DOI: CNKI: SUN: SULA.0.2015-03-022.
[16] Zhou, P.Q. (2016). Research on synchronization control technology of double winches based on fuzzy neural network. Machine Design and Manufacture. 9, 64-68. DOI: 10.19356/j.cnki.1001-3997.2016.09.017.
[17] Li, J.J., Xu, Y., Zhang, G., Wei, Z.Y. & Zhang, Y.B. (2015). Irrigation controller design based on BP neural network prediction and fuzzy control. Machine Design and Research. 31(05), 150-154. DOI: 10.13952/j.cnki.jofmdr. 2015.0207.
[18] Luo, C.N., Hao, R.K. & Yang, W. (2018). Boiler temperature control simulation in industrial production process. Computer simulation. 35(09), 358-362. DOI: 10.3969/j.issn.1006-9348.2018.09.074.
[19] Zhao, J. & Xu, H. (2016). Computer simulation study on segmental control of barrel temperature of injection molding machine. Synthetic Resin and Plastics. 33(05), 61-63. DOI: 10.3969/j.issn.1002-1396.2016.05.018.
Go to article

Authors and Affiliations

Zou Chaoxin
1
Li Rong
1
Xie Zhiping
1
Su Ming
1
Zeng Jingshi
2
Ji Xu
1
Ye Xiaoli
1
Wang Ye
1

  1. Guizhou Normal University, China
  2. Guizhou Zhenhua New Material Co., Ltd., China

This page uses 'cookies'. Learn more