Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 16
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Surowce energetyczne są podstawą dla wytwarzania energii w formie ciepła i prądu na Ziemi. Obecne rozwiązania dotyczące konstrukcji bezpiecznych i ekonomicznych reaktorów jądrowych, jak również proces wykorzystania energii z odnawialnych źródeł energii, ponadto przyszłościowe rozwiązania otrzymywania czystej energii z wodoru, ogniw paliwowych i innych źródeł mają decydujący wpływ na zmianę tego tradycyjnego podejścia. Niemniej jednak, kopalne surowce energetyczne (ropa naftowa, gaz ziemny i węgiel) nie mają obecnie substytutów, które sprostałyby wymaganemu zapotrzebowaniu na energię. W artykule omówiono problemy i wyzwania związane z wykorzystaniem kopalnych paliw w energetyce polskiej. Przybliżono stan zasobów (bilansowych i przemysłowych) pierwotnych nośników energii: węgla kamiennego, węgla brunatnego, ropy naftowej, gazu ziemnego i metanu pokładów węgla. Zwrócono szczególną uwagę, że bardzo duże zasoby węgla kamiennego i brunatnego mogą i powinny być wykorzystywane w gospodarce kraju. Przeszkodą dla długoterminowego wykorzystania tych nośników w energetyce jest polityka energetyczno-klimatyczna Unii Europejskiej, która zdecydowanie zmierza do znaczącej redukcji emisji gazów cieplarnianych. Dokonano również omówienia stanu obecnego krajowej energetyki konwencjonalnej, jak również zarysu jej przyszłości. Zwrócono uwagę, że zapewnienie bezpieczeństwa dostaw energii elektrycznej będzie wymagało znacznego wysiłku inwestycyjnego zarówno w sektorze wytwórczym, jak i sieciowym. Artykuł zwieńcza omówienie problemów i wyzwań związanych z funkcjonowaniem krajowego sektora energii. Należy podkreślić, że nadszedł czas na podjęcie przez rząd strategicznych decyzji, dotyczących kształtowania przyszłej struktury paliwowej systemu wytwarzania energii. Polska musi w dalszym ciągu zmierzać w kierunku gospodarki niskoemisyjnej, a rozwój zaawansowanych technologii ograniczających emisję i podniesienie efektywności energetycznej to właściwy kierunek działań.
Go to article

Authors and Affiliations

Lidia Gawlik
Eugeniusz Mokrzycki
Download PDF Download RIS Download Bibtex

Abstract

Postęp cywilizacji jest nieodmiennie związany z coraz szybszym wytwarzaniem odpadów. Kwestia odpadów stała się już globalnym problemem. Na całym świecie opracowuje się nowe technologie utylizacji odpadów i metody zastosowania ich w przemyśle. Jedną z takich możliwości jest wykorzystanie palnych frakcji odpadów w charakterze źródła energii.
Go to article

Authors and Affiliations

Eugeniusz Mokrzycki
Alicja Uliasz-Bocheńczyk
Download PDF Download RIS Download Bibtex

Abstract

The changes in the domestic solid fuel market (including forecasted increases in the fuel prices) and the growing requirements related to actual environmental standards, result in increased interest in renewable energy sources, such as biomass, wind and solar energy. These sources will allow to achieve reduction in the CO2 emission, and consequently – avoid environmental costs after 2020. Therefore, the development of distributed energy systems, based on the use of biomass boilers, gas boilers and high efficiency combined heat and power units, will enable the fulfillment of current standards in the field of energy efficiency and emission of pollutants to the atmosphere. It should be emphasized that the actions taken to reduce emissions (e.g. anti-smog act) will contribute to reducing coal consumption in the municipal and housing sector (households, agriculture and other customers) in favor of biomass and other renewable energy sources. The article reviews selected biomass technologies:

- fluidized, dust and grate boilers,

- straw-fired boilers,

- cogeneration systems powered by biomass,

- torrefaction and biomass carbonisation.

The mentioned technologies are characterized by a high potential of in the field of dynamic development and practical application in the coming years. Thus, they can improve difficult situation in the distributed energy sector with a capacity up to 50 MW.

Go to article

Authors and Affiliations

Tomasz Mirowski
Eugeniusz Mokrzycki
Mariusz Filipowicz
Krzysztof Sornek
Download PDF Download RIS Download Bibtex

Abstract

The cement industry has been using waste as a raw material for many years. Waste is also used as alternative fuel. Cement plants are an important element of the waste management system and fit the idea of a circular economy. When waste is recovered in the cement production process, direct and indirect CO 2 emissions are partially avoided. This article discusses the cement industry in Poland. The current situation in terms of the use of alternative fuels and raw materials in Poland, the different types of waste and the amount of waste used is discussed. The article discusses changes in the amount of waste (the increase in the amount of waste used as raw materials from the year 2006 to the year 2019) and the types of waste recovered in the cement production process and the possibility of closing material cycles on the plant scale (recycling to the primary process – cement kiln dust) and industry (using waste from other industries: metallurgy – granulated blast furnace slag, iron bearings; energy production – fly ash, reagypsum/phosphogypsum, fluidized bed combustion fly ash, and fluidized bed combustion bottom ash; wastewater treatment plants – sewage sludge, etc.). The analysis shows that the role of cement plants in waste management and the circular economy in Poland is important. Industrial waste from metallurgy, power plants, heat and power plants, wastewater treatment plants, and municipal waste is used as the raw material for the cement industry, leading to an industrial symbiosis.
Go to article

Authors and Affiliations

Alicja Uliasz-Bocheńczyk
1
ORCID: ORCID
Eugeniusz Mokrzycki
2
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Civil Engineering and Resource Management, Kraków, Poland
  2. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The use of biomass in the energy industry is the consequence of ongoing efforts to replace Energy from fossil fuels with energy from renewable sources. However, due to the diversity of the biomass, its use as a solid fuel generates waste with diverse and unstable chemical composition. Waste from biomass combustion is a raw material with a very diverse composition, even in the case of using only one type of biomass. The content of individual elements in fly ash from the combustion of biomass ranges from zero to tens of percent. This makes it difficult to determine the optimal recovery methods. The ashes from the combustion of biomass are most commonly used in the production of building materials and agriculture. This article presents the elemental composition of the most commonly used biomass fuels. The results of the analysis of elemental composition of fly ashes from the combustion of forest and agricultural biomass in fluidized bed boilers used in the commercial power industry were presented. These ashes are characterized by a high content of calcium (12.3–19.4%), silicon (1.2–8.3%), potassium (0.05–1.46%), chlorine (1.1–6.1%), and iron (0.8–6.5%). The discussed ashes contained no sodium. Aluminum was found only in one of the five ashes. Manganese, chromium, copper, nickel, lead, zinc, sulfur, bismuth, titanium and zirconium were found in all of the examined ashes. The analysis of elemental composition may allow for a preliminary assessment of the recovery potential of a given ash.

Go to article

Authors and Affiliations

Alicja Uliasz-Bocheńczyk
ORCID: ORCID
Eugeniusz Mokrzycki
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The progress of civilization is inevitably connected with the ever increasing production of waste. Waste has become humanity's global problem. All over the world, new_ technologies are being developed that strive to decrease the amount of waste and seek ways of utilizing waste in industry. One of the opportunities for this involves the use of the combustible fractions of waste as an energy source.
Go to article

Authors and Affiliations

Eugeniusz Mokrzycki
ORCID: ORCID
Alicja Uliasz-Bocheńczyk
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The alternative waste fuels have a significant share in the fuel mix of the cement industry in Poland. The conditions inside cement kilns are favorable enough for environmentally-friendly use of waste fuels. In the article, the authors discuss the current situation concerning the use of alternative fuels in Poland, from difficult beginning in the 1990s to the present time, different kinds of fuels, and the amounts of used fuels. The use of fuels in Poland is presented against the global and EU consumption (including Central European countries and companies). The increased use of waste-derived fuels, from the level of about 1% at the end of the 1990s to the present level of about 70%, allowed for the limitation of waste storage, including avoidance of greenhouse gas emissions and consumption of conventional energy sources; those effects also contributed to the implementation of the sustainable development and circular economy conceptions. The experiences of the cement plants worldwide prove that the use of waste fuels is ecological and economical. The examples showed in the article confirm that cement plants are greatly interested in using waste fuels from waste, as they invest in the infrastructure allowing to store bigger amounts of waste and dose them more efficiently. Thus, the cement industry has become an important element of the country’s energy economy and waste management system.
Go to article

Bibliography

  1. Aranda Usón, A., López-Sabirón, A.M., Ferreira, G. & Llera Sastresa, E. (2013). Uses of alternative fuels and raw materials in the cement industry as sustainable waste management options, Renewable & Sustainable Energy Reviews, 23, pp. 242–260.
  2. Bąblewski, P. (2012). Co-combustion of alternative fuels in the cement plants Cemex-Poland, in: Proceedings of Conference – Waste to Energy – Warszawa, 14th June 2012. (in Polish)
  3. Beer, J. de, Cihlar, J. & Hensing, I. (2017a). Status and prospects of co-processing of waste in EU cement plants. (https://cembureau.eu/media/ldfdotk0/12950-ecofys-co-processing-waste-cement-kilns-case-studies-2017-05.pdf (16.07.2021)).
  4. Beer, J. de, Cihlar, J., Hensing, I. & Zabeti, M. (2017b). Status and prospects of co- processing of waste in EU cement plants. (https://cembureau.eu/media/2lte1jte/11603-ecofys-executive-summary_cembureau-2017-04-26.pdf (16.07.2021)).
  5. Bieniek, J., Domaradzka, M., Przybysz, K. & Woźniakowski, W. (2011). Use of alternative fuels based on selected fraction of communal and industrial waste in Gorazdze Cement, Acta Agrophysica, 17, pp. 277−288. (in Polish)
  6. Buzzi Unicem (2014–2020). Sustainability Report 2014, 2015, 2016, 2017, 2018, 2019, 2020. (https://www.dyckerhoff.pl/raporty-zr (16.07.2021)).
  7. Cao, Y. & Pawłowski, L. (2012). Lublin experience with co-incineration of muncipal solid wastes in cement industry, Annual Set the Environment Protection, 14, pp. 132−145.
  8. CEMBUREAU (2020). Cementing the European Green Deal. Reaching climate neutrality along the cement and concrete value chain by 2050. (https://cembureau.eu/media/w0lbouva/cembureau-2050-roadmap_executive-summary_final-version_web.pdf (16.07.2021)).
  9. Cement Ożarów (2019). http://ozarow.com.pl/o-nas/zrownowazony-rozwoj/ (16.08.2021)). (in Polish)
  10. Cemex (2016). Alternative fuels at CEMEX Polska. (https://www.cemex.pl/documents/46481509/46532590/CX_Paliwa_Alternatywne.pdf/97cc39f5-fa6f-fe04-8a58-6d0f23d1f928 (16.07.2021)). (in Polish))
  11. Cemex (2002–2020). Annual Report. Global Reports, Cemex, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020. (https://www.cemex.com/sustainability/reports/global-reports (16.07.2021)).
  12. Cemex Polska (2017–2019). Chełm Cement Plant. Environmental Statement 2016, 2017, 2018, 2019. (https://www.cemex.pl/zarzadzanie-wplywem-na-srodowisko.aspx (16.07.2021)). (in Polish)
  13. Cemex Polska (2010–2016) Sustainability Report 2010, 2011–2012, 2013–2014, 2015–2016. (https://www.cemex.pl/nasze-raporty (16.07.2021)). (in Polish)
  14. Change of municipal waste management system in Poland in 2012–2016, 2017. (https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/srodowisko/zmiana-systemu-gospodarki-odpadami-komunalnymi-w-polsce-w-latach-2012-2016,6,1.html (16.07.2021)). (in Polish)
  15. CRH (2018). Creating a Sustainable Built Environment. CRH Sustainbility Report 2017. (https://www.crh.com/media/1022/crh-sustainability-report-2018.pdf (16.07.2021)).
  16. Czech Cement Association (2017–2019). Data 2017, 2018, 2019. Svaz výrobců cementu České republiky Czech Cement Association. (https://www.svcement.cz/data/data-2020/ (16.07.2021)).
  17. Ecofys (2016). Market opportunities for use of alternative fuels in cement plants across the EU Assessment of drivers and barriers for increased fossil fuel substitution in three EU member states: Greece, Poland and Germany. (https://coprocessamento.org.br/wp-content/uploads/2019/09/Ecofys_Report_Market_Opportunities_Coprocessing_20160501.pdf (16.07.2021)).
  18. Fyffe, J.R., Breckel, A.C., Townsend, A.K. & Webber, M.E. (2016). Use of MRF residue as alternative fuel in cement production, Waste Management, 47, pp. 276–284.
  19. Genon, G. & Brizio, E. (2008). Perspectives and limits for cement kilns as a destination for RDF, Waste Management, 28, pp. 2375–2385.
  20. Górażdże Group, 2016. Sustainable Report 2014–2015. Górażdże Group. (https://www.gorazdze.pl/pl/raport-zrownowazonego-rozwoju-2014-2015 (16.07.2021)). (in Polish)
  21. Hasanbeigi, A., Lu., L., Williams, Ch. & Price. L., (2012). International best practices for pre-processing and co-processing municipal solid waste and sewage sludge in the cement industry. Lawrence Berkeley Laboratory (LBL) for the U.S. Environmental Protection Agency. (https://www.osti.gov/servlets/purl/1213537 (16.08.2021)).
  22. HeidelbergCement (20042020) Sustainability Report 2004/2005, 2006, 2009/2010, 2011/2012, 2013/2014, 2015, 2016, 2017, 2018, 2019, 2020. https://www.heidelbergcement.com/en/sustainability-reports (16.07.2021)).
  23. Holt, S.P. & Berge, N.D. (2018). Life-cycle assessment of using liquid hazardous waste as an alternative energy source during Portland cement manufacturing: A United States case study, Journal of Cleaner Production, 195, pp. 1057–1068.
  24. Husillos Rodríguez, N., Martínez-Ramírez, S., Blanco-Varela, M.T., Donatello, S., Guillem, M., Puig, J., Fos, C., Larrotcha, E. & Flores, J. (2013). The effect of using thermally dried sewage sludge as an alternative fuel on Portland cement clinker production. Journal of Cleaner Production, 52, pp. 94–102.
  25. Kookos, I.K., Pontikes, Y., Angelopoulos, G.N. & Lyberatos, G. (2011). Classical and alternative fuel mix optimization in cement production using mathematical programming. Fuel, 90, pp. 1277–1284.
  26. LafargeHolcim (2019). Sustainability Report Lafarge in Poland 2017-2018. (https://www.lafarge.pl/sites/poland/files/atoms/files/lafarge-zrownowazony-rozwoj-raport-broszury-2017-2018.pdf (16.07.2021)).
  27. LafargeHolcim (2017–2020). Sustainability Report 2017, 2018, 2020.(https://www.holcim.com/sustainability-reports (16.07.2021)).
  28. Lechtenberg, D. (2008). Alternative fuels – history and outlook, Global Fuels Magazine, pp. 28–30.
  29. Liu, X., Yuan, Z., Xu, Y. & Jiang, S. (2017). Greening cement in China: A cost-effective roadmap, Applied Energy, 189, pp. 233–244.
  30. Mauschitz, G. (2009 - 2019). Emissionen aus Anlagen der österreichischen Zementindustrie Berichtsjahr 2009, 2011, 2014, 2017, 2018, 2019. (https://www.zement.at/service/publik.ationen/emissionsberichte (16.07.2021)). (in German)
  31. Mokrzycki, E. & Uliasz-Bocheńczyk, A. (2009). Management of primary energy carriers in Poland versus environmental protection, Annual Set the Environment Protection, 11, pp. 103–131. (in Polish)
  32. Mokrzycki, E., Uliasz-Bocheńczyk, A. & Sarna, M. (2003). Use of alternative fuels in the Polish cement industry, Applied Energy, 74, pp. 101–111.
  33. "ODRA" S.A. Cement Mill 2018. Environmental Statement "ODRA" S.A. Cement Mill 2018. (https://emas.gdos.gov.pl/files/artykuly/24009/Cementownia-Odra-DEKLARACJA-SRODOWISKOWA-ZA-ROK-2018_icon.pdf (16.08.2021)). (in Polish)
  34. "ODRA" S.A. Cement Mill 2018. Environmental Statement "ODRA" S.A. Cement Mill 2019. (http://emas.gdos.gov.pl/files/artykuly/24009/50.-DEKLARACJA-SRODOWISKOWA-ZA-ROK-2019_icon.pdf (16.08.2021)). (in Polish)
  35. Olkuski, T. (2013). Analysis of domestic reserves of steam coal in the light of its use in power industry. Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 29, pp. 25-38. (in Polish)
  36. Rahman, A., Rasul, M.G., Khan, M.M.K. & Sharma, S. (2015). Recent development on the uses of alternative fuels in cement manufacturing process, Fuel, 145, pp. 84–99.
  37. Regulation of the Minister of Economy of 16 July 2015 on the acceptance of waste to landfills. Journal of Laws, 2015, item 1277).
  38. Schakel, W., Hung, C.R., Tokheim, L.A., Strømman, A.H., Worrell, E. & Ramírez, A. (2018). Impact of fuel selection on the environmental performance of post-combustion calcium looping applied to a cement plant, Applied Energy, 210, pp. 75–87.
  39. Schorcht, F., Kourti, I., Scalet, B.M , Roudier, S., Sancho, L.D. (2013) Reference Document on Best Available Techniques in the Cement, Lime and Magnesium Oxide. Manufacturing Industries (May 2010). European Commission. European Integrated Pollution Prevention and Control Bureau. http://eippcb.jrc.es/reference/cl.html (16.08.2021)).
  40. The Plan…(2016)a. Waste Management Plan for Lublin Voivodeship 2022. (https://www.lubelskie.pl/file/2018/11/WPGO-2022.pdf (16.07.2021)). (in Polish)
  41. The Plan…(2016)b. Waste Management Plan for the Opole Voivodeship 2016-2022 taking into account the years 2023-2028 – project. (http://m.opolskie.pl/docs/plik_22.pdf (16.07.2021)). (in Polish)
  42. The Plan…(2016)c. Waste Management Plan for the Świętokrzyskie Voivodeship 2016-2022 - project. (http://bip.sejmik.kielce.pl/237-departament-rozwoju-obszarow-wiejskich-i-srodowiska/4460-plan-gospodarki-odpadami-dla-wojewodztwa-swietokrzyskiego-2016-2022/23107.html (16.07.2021)). (in Polish)
  43. The Polish Cement Association (2006–2021). Bulletin of The Polish Cement Association 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021. (in Polish)
  44. Uliasz-Bocheńczyk, A.& Mokrzycki, E. (2015). Biomass as a fuel in power industry. Annual Set the Environment Protection, 17, pp. 900–913. (in Polish)
  45. Verein Deutscher Zementwerke (2014–2019). Environmental Data of the German Cement Industry, 2014, 2015, 2016, 2017, 2018, 2019. (https://www.vdz-online.de/en/ (16.07.2021)).
Go to article

Authors and Affiliations

Alicja Uliasz-Bocheńczyk
1
ORCID: ORCID
Jan Deja
2
ORCID: ORCID
Eugeniusz Mokrzycki
3
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Civil Engineering and Resource Management, Poland
  2. AGH University of Science and Technology, Faculty of Materials Science, and Ceramics, Poland
  3. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the era of the fight against global warming and in light of the search for energy with the least possible impact on the environment, interest in hydrogen has become a natural direction of development. Striving for a zero-emission Europe by 2050, the EU promotes low-emission and ultimately emission-free hydrogen for the widest possible use in the economy. Poland has developed a strategic document specifying the necessary activities for the use of hydrogen in the economy, which should at the same time maintain its competitiveness. Poland is currently the third producer of hydrogen in the European Union, which enables strategic thinking about maintaining Poland as a leading player on the hydrogen market in the long term. Currently, hydrogen in Poland is produced by (usually large) state-owned enterprises for their own needs with only a small margin of its resale. This is conventional hydrogen that is mainly obtained from natural gas. Therefore, it is difficult to talk about the hydrogen market, which must develop so that this raw material can be widely used in many branches of the modern economy. However, this requires taking a number of legislative, research and development and investment activities, as well as directing the national energy transformation to renewable energy sources, which may ultimately reduce the costs of pure hydrogen production. A number of actions have been taken, but the delay in legislative actions is slowing down the creation of the hydrogen market and is limiting the interest of private businesses in engaging in transformation activities.
Go to article

Authors and Affiliations

Aleksandra Komorowska
1
ORCID: ORCID
Eugeniusz Mokrzycki
1
ORCID: ORCID
Lidia Gawlik
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute PAS, Poland

This page uses 'cookies'. Learn more