Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article has been devoted to issues connected with the alloplasty and hip joint endoprostheses, that elements are being developed, which is supported by strength, tribological tests on used biomaterials, incl. polyethylene or computer modelling based on e.g. finite element method (FEM). In this paper, the results of research on the impact of the material articulations of the system head – acetabular and friction conditions on strength parameters of polyethylene components in the hip joint endoprosthesis. Numerical analysis of this friction node was carried out, using the ADINA System computer program and the simulations were performed at various friction conditions for metal/ polyethylene and ceramic/ polyethylene articulations with various UHMWPE modifications. The simulations results have shown the influence of tested material associations and friction conditions on parameters related to the strength of polyethylene cups, i.e. their displacements, stresses and deformations.
Go to article

Authors and Affiliations

K. Mordal
1
ORCID: ORCID
A. Szarek
1
ORCID: ORCID

  1. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation,21 Armii Krajowej Av., 42-201 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article has been devoted to issues connected with socket fusion welding, which is next to welding one of the methods of thermoplastic polymers joining. In this paper, the research was presented, which the aim was analysis of quality of joints obtained as a result of resistance welding of polypropylene pipes with diameter ø20 in the temperature range of 200÷230°C. To that end a Testo thermal imaging camera was used, flexural strength of the combined components was tested as well as the received weld was observed under a stereoscopic microscope. Conducted studies showed that the best results of joint are obtained during welding at 220°C and 230°C, while lower temperatures did not fully perform their function during the process of joining the pipe elements.
Go to article

Authors and Affiliations

A. Kalwik
1
ORCID: ORCID
K. Mordal
1
ORCID: ORCID
J. Redutko
1
ORCID: ORCID

  1. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation,21 Armii Krajowej Av., 42-201 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

The parameters of the injection moulding process have a significant influence on the properties of the moulded parts. Selection of appropriate injection conditions (e. g. the injection temperature, mould temperature, injection and holding pressure, injection speed) contributes to the productivity and energy consumption of the injection moulding process as well as to the quality of the moulded parts. The aim of this study was to evaluate the influence of injection moulding parameters on properties of poly(ethylene) mouldings. Regranulate obtained from recycled film, which is a mixture of low-density poly(ethylene) and linear low-density poly(ethylene), was used for testing. Samples in the form of standardised tensile bars of type A1 were produced by injection moulding. A Krauss-Maffei KM65-160C4 injection moulding machine was used for this purpose. Variable parameters of the this process used in the study were: injection speed, mould temperature and holding pressure. The results of tensile strength tests of the obtained samples are presented. The weight and dimensions of mouldings from four different regranulates were also investigated. The effect of injection moulding conditions on the properties of poly(ethylene) mouldings was shown in the investigations. The mass of poly(ethylene) mouldings is dependent on the holding pressure.
Go to article

Authors and Affiliations

A. Kalwik
1
ORCID: ORCID
R. Humienny
1
ORCID: ORCID
K. Mordal
1
ORCID: ORCID

  1. Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Department of Technology and Automation, 21 Armii Krajowej Av., 42- 201 Czestochowa, Poland

This page uses 'cookies'. Learn more