Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work was to identify concentration levels of different chemical forms of mercury (TGM, TPM) in the ambient air in selected areas of the Silesian Region, characterized by low and high mercury emission. Based on the obtained data TGM and TPM concentration levels were determined. The project also focused on determination of dry and wet deposition of mercury compounds. Data concerning TGM and TPM flux rates in the ambient air and data on mercury deposition were used to determine a deposition coefficient. The coefficient was calculated as a share of mercury deposition on the land surface (dry and wet) to the amount of this contaminant transported with loads of air in the form of TGM and TPM in a given measurement station. At both monitoring stations the deposition coefficient did not exceed 0.2 %. The idea of calculating the deposition coefficient based on the analysis of TGM and TPM flux rate is a new solution. The proposed deposition coefficient allows to quantify information on a selected contaminant concentration and its potential impact resulting from deposition. Further studies on the deposition coefficient may contribute to the development of methods for estimating the impact of contaminants contained in the ambient air on other environmental components based on the analyses of the contaminant flux rate.

Go to article

Authors and Affiliations

Bartosz Nowak
Katarzyna Korszun-Kłak
Urszula Zielonka
Download PDF Download RIS Download Bibtex

Abstract

A significant challenge of modern technology is the design of high-efficiency filters that allow more effective removal of aerosol particles suspended in the air, e.g. micron and submicron oil droplets. Our previous work has proven that aerogel structure deposition on fibre surface is a promising method for post-production improvement of the oil-mist filter performance. In this work, a modification of the previously described method was proposed, consisting in carrying out the process in the flow (semi-batch) regime, i.e. the streams of reagents successively pass through the filter in a self-designed and self-made modification chamber. The effect of the reactant flow rate and the order of reactants (precursor/catalyst or catalyst/precursor solutions) on the mass of deposited aerogel, and thus - also on the filtration efficiency during the removal of oil mist droplets and the pressure drop accompanying the airflow - is presented and described. The possible routes of modification scaling-up are discussed with defined unit operations.
Go to article

Authors and Affiliations

Bartosz Nowak
1
ORCID: ORCID
Marta Bonora
2
ORCID: ORCID
Agnieszka Hahaj
1
Jakub M. Gac
1
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Chemical and Process Engineering,Waryńskiego 1, 00-645 Warsaw, Poland
  2. GVS Filter Technology, Via Roma 5040069, Zola Predosa (Bologna), Italy

This page uses 'cookies'. Learn more