Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

WC-Co cemented carbides were consolidated using spark plasma sintering in the temperature 1400°C with transition metal carbides addition. The densification depended on exponentially as a function of sintering exponent. Moreover, the secondary (M, W)Cx phases were formed at the grain boundaries of WC basal facet. Corresponded, to increase the basal facets lead to the plastic deformation and oriented grain growth. A higher hardness was correlated with their grain size and lattice strain. We suggest that this is due to the formation energy of (M, W)Cx attributed to inhibit the grain growth and separates the WC/Co interface.
Go to article

Bibliography

[1] A.I. Gusev, A.A. Remple, A.J. Magerl, Disorder and order in strongly non-stoichiometric compounds: transition metal carbides, nitrides and oxide. Berlin: Springer; 607 (2001).
[2] T.A. Fabijanic, M. Kurtela, I. Skrinjaric, J. Potschke, M. Mayer, Metals 10, 224 (2020).
[3] X. Liu, X. Song, H. Wang, X. Liu, F. Tang, H. Lu, Acta Materialia 149, 164-178 (2018).
[4] H.O. Andren, Microstructures of cemented carbides, Mater. Des. 22, 491-498 (2001).
[5] C. Barbatti, J. Garcia, P. Brito, A.R. Pyzalla, Int. J. Refract. Met. Hard Mater. 27, 768-776 (2009).
[6] G .R. Antis, P. Chantikul, B.R. Lawn, D.B. Marshall, J. Am. Ceram. Soc. 64 (9), 533-538 (1981).
[7] Y.V. Milman, J. Superhard Mater. 36, 65-81 (2014).
[8] M . Christensen, G. Wahnstrom, Acta Materialia 52 (8), 2199-2207 (2004).
[9] Y . Peng, H. Miao, Z. Peng, Int. J. Refract. Met. Hard Mater. 39, 78-89 (2013).
Go to article

Authors and Affiliations

Jeong-Han Lee
1
ORCID: ORCID
Ik-Hyun Oh
1
ORCID: ORCID
Hyun-Kuk Park
1
ORCID: ORCID

  1. Korea Institute of Industrial Technology, Smart Mobility Materials and Components R&D Group, 6, Cheomdan-gwa giro 208-gil , Buk-gu, Gwang-Ju,61012, Korea
Download PDF Download RIS Download Bibtex

Abstract

In this study, a novel composite was fabricated by adding the Hafnium diboride (HfB2) to conventional WC-Co cemented carbides to enhance the high-temperature properties while retaining the intrinsic high hardness. Using spark plasma sintering, high density (up to 99.4%) WC-6Co-(1, 2.5, 4, and 5.5 wt. %) HfB2 composites were consolidated at 1300℃ (100℃/min) under 60 MPa pressure. The microstructural evolution, oxidation layer, and phase constitution of WC-Co-HfB2 were investigated in the distribution of WC grain and solid solution phases by X-ray diffraction and FE-SEM. The WC-Co-HfB2 composite exhibited improved mechanical properties (approximately 2,180.7 kg/mm2) than those of conventional WC-Co cemented carbides. The high strength of the fabricated composites was caused by the fine-grade HfB2 precipitate and the solid solution, which enabled the tailoring of mechanical properties.
Go to article

Bibliography

[1] J.H. Lee, I.H. Oh, J.H. Jang, S.K. Hong, H.K. Park, J. Alloys Compd. 786, 1-10 (2019).
[2] J. Garcia, V.C. Cipres, A. Blomqvist, B. Kaplan, Int. J. Refract. Met. Hard Mater. 80, 40-68 (2019).
[3] S.A. Shalmani, M. Sobhani, O. Mirzaee, M. Zakeri, Ceram. Int. 46 (16), 25106-25112 (2020).
[4] M .D. Brut, D. Tetard, C. Tixier, C. Faure, E. Chabas, 10th International Conference of the European Ceramic Society, Berlin, 1315-1320 (2007).
[5] A.K. Kumar, K. Kurokawa, Books: Tungsten carbide – Processing and applications, chapter 2: Spark plasma sintering of ultrafine WC powders: A combined kinetic and microstructural study (2012).
[6] R .G. Crookes, B. Marz, H. Wu, Mater. Des. 187, 108360 (2020).
[7] C. Bargeron, R. Benson, R. Newman, A.N. Jette, T.E. Phillips, Mater. Sci. (1993).
[8] C. Bagnall, J. Capo, W.J. Moorhead, Metallography Microstructure Analysis 7, 661-679 (2018).
Go to article

Authors and Affiliations

Hyun-Kuk Park
1
ORCID: ORCID
Ik-Hyun Oh
1
ORCID: ORCID
Ju-Hun Kim
1 2
ORCID: ORCID
Sung-Kil Hong
2
ORCID: ORCID
Jeong-Han Lee
1 2
ORCID: ORCID

  1. Korea Institute of Industrial Technology, Smart Mobility Materials and Components R&D Group, 6, Cheomdan-gwa giro 208-gil, Buk-gu, Gwan g-Ju, 61012, Korea
  2. Chonnam National University, Materials Science & Engineering, 77, Yong-bongro, Buk-gu, Gwan g-ju, 61186, Korea
Download PDF Download RIS Download Bibtex

Abstract

This research describes effects of Si addition on microstructure and mechanical properties of the Al-Cr based alloys prepared manufactured using gas atomization and SPS (Spark Plasma Sintering) processes. The Al-Cr-Si bulks with high Cr and Si content were produced successfully using SPS sintering process without crack and obtained fully dense specimens close to nearly 100% T. D. (Theoretical Density). Microstructure of the as-atomized Al-Cr-Si alloys with high contents of Cr and Si was composed multi-phases with hard and thermally stable such as Al13Cr4Si4, AlCrSi, Al8Cr5 and Cr3Si intermetallic compounds. The average hardness values were 703 Hv for S5, 698 Hv for S10 and 824 Hv for S20 alloy. Enhancement of hardness value was resulted from the formation of the multi-intermetallic compound with hard and thermally stable and fine microstructure by the addition of high Cr and Si using rapid solidification and SPS process.

Go to article

Authors and Affiliations

Yong-Ho Kim
ORCID: ORCID
Ik-Hyun Oh
ORCID: ORCID
Hyo-Sang Yoo
ORCID: ORCID
Hyun-Kuk Park
ORCID: ORCID
Jung-Han Lee
Hyeon-Taek Son
ORCID: ORCID

This page uses 'cookies'. Learn more