Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the analysis of carbon footprint values for children’s footwear was conducted. This group of products is characterized by similar small mass and diversity in the used materials. The carbon footprint is an environmental indicator, which is used to measure the total sets of greenhouse gas (GHG) emissions into the atmosphere caused by a product throughout its entire lifecycle. The complexity of carbon footprint calculation methodology is caused by multistage production process. The probability of emission greenhouse gases exists at each of these stages. Moreover, a large variety of footwear materials – both synthetic and natural, give the possibility of the emission of a lot of waste, sewage and gases, which can be dangerous to the environment. The diversity of materials could be the source of problems with the description of their origins, which make carbon footprint calculations difficult, especially in cases of complex supply chains. In this paper, with use of life cycle assessment, the carbon footprint was calculated for 4 children’s footwear types (one with an open upper and three with full uppers). The life cycles of the product were divided into 8 stages: raw materials extraction (stage 1), production of input materials (stage 2), footwear components manufacture (stage 3), footwear manufacture (stage 4), primary packaging manufacture (stage 5), footwear distribution to customers (stage 6), use phase (stage 7) and product’s end of life (stage 8). On these grounds, it was possible to point out the life cycle stages, where the optimization activities can be implemented in order to reduce greenhouse gases emissions. The obtained results showed that the most intensive corrective actions should be focused on the following stages: 3 (the higher emissivity), 4 and 8.

Go to article

Authors and Affiliations

Wioleta Serweta
Robert Gajewski
Piotr Olszewski
Alberto Zapatero
Katarzyna Ławińska
Download PDF Download RIS Download Bibtex

Abstract

The paper presents development of the new Polish method for performing capacity analysis of basic segments of dual carriageway roads (motorways and expressways). The method is based on field traffic surveys conducted at 30 motorway and expressway sites (class A and S roads) in Poland. Traffic flows, composition and travel times were observed in 15-min intervals at each site using ANPR filming method. These data were used to calibrate a family of traffic speed-flow relationships for different roads, based on Van Aerde model. Free flow speed of traffic and road class are the basic parameters defining the speed-flow relationship and the value of capacity per lane in pcu/h. Traffic density was adopted as the measure of effectiveness for defining the level of service. The paper describes derivation of formulae for estimation of free flow speed for different types of roads as well as determination of equivalent factors for converting vehicles to passenger car units. The method allows us to determine capacity and the level of service based on existing or forecasted traffic flow.

Go to article

Authors and Affiliations

Piotr Olszewski
ORCID: ORCID
Tomasz Dybicz
Wojciech Kustra
ORCID: ORCID
Aleksandra Romanowska
Kazimierz Jamroz
ORCID: ORCID
Krzysztof Ostrowski
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Being negatively impressed by the data published by the European Commission in CARE (Community database on Accidents on the Roads in Europe), where Poland is presented as the European Country with the highest rate of fatalities in road crashes involving cyclists during 4 years period (2009–2013), the Authors decided to analyse available data. Bikes become a more and more popular means of transport and the way of active recreation. In Warsaw, the share of bicycle trips rises 1 to 3% per year. The aforementioned, together with increasing traffic density, caused 4233 registered injuries among cyclists in 2018 in Poland. In 286 cases the accidents were direct reasons for the cyclists’ death. Considering these facts, it becomes extremely important to point the most influencing factors and conditions contributing to cyclists’ serious accidents. Onedimensional or two-dimensional statistics are not sufficient to find all important associations between the road conditions and the number of cyclists’ accidents. To overcome that the association analysis is applied. The results of the analysis can contribute to increasing the knowledge and safety of transport.
Go to article

Bibliography


[1] Warsaw Cycle Report website: http://transport.um.warszawa.pl/ruch-rowerowy/raporty-rowerowe
[2] N. Stamatiadis, S. Cafiso and G. Pappalardo, A Comparison of Bicyclist Attitudes in Two Urban Areas in USA and Italy, The 4th Conference on Sustainable Urban Mobility, pp. 272–279, 2018. https://doi.org/10.1007/978-3-030-02305-8_33
[3] Police website: http://statystyka.policja.pl/st/ruch-drogowy/76562,wypadki-drogowe-raporty-roczne.html
[4] P. Włodarek, P. Olszewski, Traffic safety on cycle track crossings – traffic conflict technique, Journal of Transportation Safety & Security 12: pp. 194–209, 2020. https://doi.org/10.1080/19439962.2019.1622615
[5] Y.A. Ünvan, Market basket analysis with association rules, Communications in Statistics - Theory and Methods, 2020. https://doi.org/10.1080/03610926.2020.1716255
[6] D.T. Larose, C.T. Larose, Discovering Knowledge in Data, 2nd edition, Wiley, 2016.
[7] T. Morzy, Eksploracja danych. Metody i algorytmy, PWN, Warsaw, 2013.
[8] A. Shi, B. Mou, J.C. Correl, Association analysis for oxalate concentration in spinach, Euphytica, 2003. https://doi.org/10.1007/s10681-016-1740-0
[9] M. Lasek, M. Pęczkowski, Analiza asocjacji i reguły asocjacyjne w badaniu wyborów zajęć dydaktycznych dokonywanych przez studentów. Zastosowanie algorytmu Apriori, Ekonomia. Rynek. Gospodarka, Warsaw, 2013.
[10] T. Klimanek, M. Szymkowiak, T. Józefowski, Application of market basket analysis in biological disability, Research Papers of Wrocław University of Economics 507, 2018. https://doi.org/10.15611/pn.2018.507.09
[11] A.M. Ahmed, A.A. Bakar AA, A.R. Hamdana, S.M. Abdullah, O. Jaafarb, Sequential pattern discovery algorithm for Malaysia rainfall prediction. Acta Phys Pol A 2015. http://dx.doi.org/10.12693/APhysPolA.128.B-324
[12] A. Nicał, H. Anysz, The quality management in precast concrete production and delivery processes supported by association analysis, International Journal of Environmental Science and Technology, 2019. https://doi.org/10.1007/s13762-019-02597-9
[13] H. Anysz, A. Foremny, J. Kulejewski, Comparison of ANN classifier to the neuro-fuzzy system for collusion detection in the tender procedures of road construction sector. IOP Conf Ser Mater Sci Eng., 2019. https://dx.doi.org/10.1088/1757-899x/471/11/112064
[14] H. Anysz, B. Buczkowski, The association analysis for risk evaluation of significant delay occurrence in the completion date of construction project, International Journal of Environmental Science and Technology, 2018. https://doi.org/10.1007/s13762-018-1892-7
[15] K. Guerts, G, Wets, T. Brijs, K. Vanhoof, Profiling High Frequency Accident Locations Using Association Rules, Transportation Research Record - Journal of the Transportation Research Board, 1840, 2003. http://dx.doi.org/10.3141/1840-14
[16] A. Pande, M. Abdel-Aty, Market basket analysis of crash data from large jurisdictions and its potential as a decision support tool, Elsevier, Safety Science 47: pp. 145–154, 2009. https://doi.org/10.1016/j.ssci.2007.12.001
[17] C. Xu, J. Bao, C. Wang, P. Liu, Association rule analysis of factors contributing to extraordinarily severe traffic crashes in China, Journal of Safety Research 67: 65-75, 2018. https://doi.org/10.1016/j.jsr.2018.09.013
[18] D. Nenadić, Ranking dangerous sections of the road using MCDM model. Decision Making: Applications in Management and Engineering, 2(1): pp. 115–131, 2019. Retrieved from https://dmame.rabek.org/index.php/dmame/article/view/31
[19] P. Olszewski, P. Szagała, D. Rabczenko, & A. Zielińska, Investigating safety of vulnerable road users in selected EU countries. Journal of Safety Research, 68: pp. 49–57, 2019. https://doi.org/10.1016/j.jsr.2018.12.001
[20] https://ec.europa.eu/transport/road_safety/specialist/statistics# (access June 2019)
Go to article

Authors and Affiliations

Hubert Anysz
1
ORCID: ORCID
Paweł Włodarek
1
ORCID: ORCID
Piotr Olszewski
1
ORCID: ORCID
Salvatore Cafiso
2
ORCID: ORCID

  1. Warsaw University of Technology, Faculty of Civil Engineering, Al. Armii Ludowej 16, 00-637 Warsaw, Poland
  2. University of Catania, Department of Civil Engineering and Architecture, Viale Andrea Doria 6, 95131 Catania, Italy

This page uses 'cookies'. Learn more