Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Moulding properties of Isasa River Sand bonded with Ipetumodu clay (Ife-North Local Government Area, Osun State, Nigeria) were

investigated. American Foundry men Society (AFS) standard cylindrical specimens 50mm diameter and 50mm in height were prepared

from various sand and clay ratios (between 18% and 32%) with 15% water content. The stress-strain curves were generated from a

universal strength testing machine. A flow factor was calculated from the inclination of the falling slope beyond the maximum

compressive strength. The result shows that the flowability of the samples increases from 18% to 26% clay content, its maximum value

was attained at 26% and then it decreases from 30% to 32% clay content. The green compressive strength, dry compressive strength and

air permeability values obtained from the mould samples were in accordance with standard values used in foundry practice. The x-ray

diffraction test shows that the sand contains silicon oxide (SiO2), Aluminium oxide (Al2O3), and Aluminium silicate (Al6Si2O13). The

mould samples were heated to a temperature of 1200 o

C to determine the sintering temperature; fussion did not take place at this

temperature. The results showed that the sand and clay mixture can be used to cast ferrous and non-ferrous alloys.

Go to article

Authors and Affiliations

A.O. Oke
B.V. Omidiji
Download PDF Download RIS Download Bibtex

Abstract

The influence of the refractory coating which is a mixture of silica flour and kaolin on the surface roughness of the plate castings produced

using evaporative patterns had been considered in this work. The kaolin was used as a binder and ratio method was employed to form basis

for the factorial design of experiment which led to nine runs of experiments. Methyl alcohol at 99% concentration was used as the carrier

for the transfer of the coating to the surface of the patterns. Pouring temperature was observed as a process parameter alongside the mix

ratios of the coating. Attempts were made to characterize the refractory coating by using two methods; differential thermal analysis (DTA)

and X-ray diffraction. Attempt was also made to characterize the casting material. Gating system design was done for the plate casting to

determine the correct proportions of the gating parameters in order to construct the gating system properly to avoid turbulence during

pouring of liquid metal. A digital profilometer was used to take the measurements of the surface roughness. It was observed that the mix

ratio 90% silica flour-10% kaolin produced the lowest value of the surface roughness of the plate castings and had the lowest material loss

in the DTA test. The pouring temperature of 650o

C produced best casting.

Go to article

Authors and Affiliations

B.V. Omidiji
R.H. Khan
M.S. Abolarin
Download PDF Download RIS Download Bibtex

Abstract

This study investigated the suitability of Ijero-Ekiti quartz as a refractory raw material for industrial furnace applications. In order to ascertain its prospective applications, the thermal behaviour, mineralogical composition and chemical composition were determined. Ijero-Ekiti quartz was characterized using Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Thermogravimetric and Differential Thermal analysis (TGA and DTA). Its thermal conductivity with specific heat coefficient was determined. The outcome revealed that the quartz sample has a high purity of 94.3% SiO 2, making it suitable as a refractory material. The XRD analysis revealed the presence of alpha-quartz as the dominant crystal phase, which is desirable for refractory applications. The FTIR analysis indicated the absence of hydroxyl (-OH) groups. This indicates a low risk of failure and damage such as spalling, cracking and other forms of damage when produced into bricks. The TGA and DTA displayed significant mass losses and large endothermic bands, which were connected to the dehydroxylation of the quartz rock samples. Based on the demonstrated qualities, the quartz rock sample could be subjected to thermal processing. This study therefore established that Ijero-Ekiti quartz is a suitable raw material for refractory applications due to its high purity, alpha-quartz dominant crystal phase, absence of hydroxyl groups, and uniform morphology.
Go to article

Bibliography

[1] Jongs, L.S., Jock, A.A., Ekanem, O.E. & Jauro, A. (2018). Investigating the industrial potentials of some selected Nigerian clay deposits. Journal of Minerals and Materials Characterization and Engineering. 6, 569-586. DOI: 10.4236/jmmce.2018.66041.
[2] Adeoti, M., Dahunsi, O., Awopetu, O.O., Aramide, F., Alabi, O., Johnson, O. & Abdulkarim, A. (2019). Suitability of selected Nigerian clays for foundry crucibles production. Procedia Manufacturing. 35, 1316-1323. https://doi.org/10.1016/j.promfg.2019.05.023.
[3] Thethwayo, B. & Steenkamp, J. (2020). A review of carbon-based refractory materials and their applications. Journal of the Southern African Institute of Mining and Metallurgy. 120, 641-650. http://dx.doi.org/10.17159/2411-9717/1011/2020.
[4] Fleuriault, C., Grogan, J. & White, J. (2018). Refractory materials for metallurgical Uses. The Journal of The Minerals, Metals & Materials Society. 70, 2420-2421. https://doi.org/10.1007/s11837-018-3096-5.
[5] Sarkar, R. (2016). Refractory technology: Fundamentals and applications. CRC Press, Boca Raton, Florida, United State.
[6] Lee, S. (2015). Types of Refractory Materials and their Applications [Online]. Linkedin. Available: https://www.linkedin.com/pulse/types-refractory-materials-applications-le-sylvia [Accessed June 16 2021]
[7] MARKETS AND MARKETS. (2020). Refractories Market by Form (Shaped Refractories, Unshaped Refractories), Alkalinity (Acidic & Neutral. Basic), End-Use Industry (Iron & Steel, Power Generation, Non-Ferrous Metals, Cement, Glass), and Region - Global Forecast to 2025 [Online]. MARKETSANDMARKETS. Available: https://www.marketsandmarkets.com/Market-Reports/refractories-market-222632393.html?gclid=CjwKCAjwiLGGBhAqEiwAgq3q_mu5-rTCddXNmL2Po9LaVwDTS2rVmPj8dfITLtQzmA4u7BCHkVKZ-RoCur0QAvD_BwE [Accessed June 16 2021].
[8] Ren, C. & Enneti, R.K. (2020). Process design and material development for high-temperature applications. The Journal of The Minerals, Metals & Materials Society. 72. 4028-4029. https://doi.org/10.1007/s11837-020-04381-4.
[9] Patel, N. (2013). Factors affecting the lifespan of cast refractory linings: a general overview. Journal of the Southern African Institute of Mining and Metallurgy. 113, 637-641.
[10] Oyeyemi, A.O., Adekola, F.A., & Olaleye, M.B. (2016). Characterization of Ijero-Ekiti kaolin for industrial applications. Journal of Minerals and Materials Characterization and Engineering. 5(3), 153-160. https://doi.org/10.4236/jmmce.2016.53018.
[11] Adeniyi, F.I., Ogundiran, M.B., Hemalatha, T. & Hanumantrai, B.B. (2020). Characterization of raw and thermally treated Nigerian kaolinite-containing clays using instrumental techniques. SN Applied Sciences. 2, 1-14. https://doi.org/10.1007/s42452-020-2610-x.
[12] Kralik, G., Martins, K.V., Alves, J.R., Sartori, D.V., Scholz, R. & Corat, E.J. (2016). Characterization and utilization of quartz sands in the manufacture of silicon metal. Journal of Cleaner Production. 112, 3304-3311. https://doi.org/10.1016/j.jclepro.2015.06.108.
[13] Guan, Y., Zhang, X., Chen, J. & Wang, L. (2018). Study on thermal shock resistance and high-temperature behavior of quartz-feldspar refractory materials. Journal of the American Ceramic Society. 101(4), 1467-1475. https://doi.org/10.1111/jace.14900.
[14] Zhou, C., Gao, X., Xu, Y., Buntkowsky, G., Ikuhara, Y., Riedel, R., & Ionescu, E. (2015). Synthesis and high-temperature evolution of single-phase amorphous Si–Hf–N ceramics. Journal of the European Ceramic Society. 35(7), 2007-2015. https://doi.org/10.1016/j.jeurceramsoc.2015.01.026.
[15] ASTM C201-93(2019). Standard test method for thermal conductivity of refractories. ASTM International, West Conshohocken, PA, United State.
[16] ASTM C114-22 (2022). Standard test methods for chemical analysis of hydraulic cement. ASTM International, West Conshohocken, PA, United State.
[17] Griffiths, P.R. & De Haseth, J.A. (1986). Fourier transform infrared spectrometry. John Wiley & Sons; New York, United State.
[18] Stodghill, S.P. (2010). Thermal analysis - A review of techniques and applications in the pharmaceutical sciences. American Pharmaceutical Review. 13(2), 29-36.
[19] Craig, D.Q.M., Reading, M. (2007). Thermal analysis of pharmaceuticals. CRC Press, Taylor and Francis Group, Boca Raton, Florida, United State.
[20] Drábik, M. (2017). The challenge of methods of thermal analysis in solid state and materials chemistry. Pure and Applied Chemistry. 89(4), 451-459.
[21] Drabik, M. & Slade, R.C. (2004). Macrodefect-free materials: modification of interfaces in cement composites by polymer grafting. Interface Science. 12(4), 375-379. https://doi.org/10.1023/B:INTS.0000042335.65518.11.
[22] Mojumdar, S.C., Mazanec, K. & Drabik, M. (2006). Macro-defect-free (MDF) cements. Journal of Thermal Analysis and Calorimetry. 83(1), 135-139.
[23] Drábik, M. (2009). Contribution of materials chemistry to the knowledge of macro-defect-free (MDF) materials. Pure and Applied Chemistry. 81(8), 1413-1421. https://doi.org/10.1351/PAC-CON-08-07-16.
[24] Drabik, M., Billik, P. & Galikova, L. (2012). Macro defect free materials; the challenge of mechanochemical activation. Ceramics-Silikáty. 56(4), 396-401. https://doi.org/10.1007/s10973-005-7045-5.
[25] Ahmed, Y.E., Abdulaziz, A.A., Hamid, M.S., Anesh, M.P., Saeed, M.A., Arfat, A. & Mohammad, I.A. (2019). Effect of pyrolysis temperature on biochar microstructural evolution, physicochemical characteristics, and its influence on biochar/polypropylene composites. Applied Science. 9(6), 1-18. https://doi.org/10.3390/app9061149.
[26] Ajala, A.J. & Badarulzaman, N.A. (2016). Thermal conductivity of Aloji fireclay as refractory material. International Journal of Integrated Engineering. 8(2), 16-20.
[27] Vaishnav, H., Navin, K., Kurchania, R. & Ball, R.J. (2022). Synthesis of ZrO2 based nanofluids for cooling and insulation of transformers. IEEE Transactions on Dielectrics and Electrical Insulation. 29(1), 199-205. DOI: 10.1109/TDEI.2022.3148444.
[28] Ajiboye, T.K., Fabiyi, M.O., Mustapha, N. & Abdulkareem, S. (2022). Characterization of clay and granite dust blends as novel materials for energy storage and diffuser in constructing solar flat-plate collector. Tanzania Journal of Science. 48(2), 283-293.
[29] Ritz, M., Vaculíková, L. & Plevová, E. (2010). Identification of clay minerals by infrared spectroscopy and discriminant analysis. Society for Applied spectroscopy. 64(12) 1379-1387.
[30] Yue, C., Liu, J., Zhang, H., Dai, L., Wei, B. & Chang, C. (2018). Increasing the hydrophobicity of filter medium particles for oily water treatment using coupling agents. Heliyon. 4(9), 1-14. DOI: 10.1016/j.heliyon.2018.e00809.
[31] Zaitan, H., Bianchi, D., Achak, O. & Chafik, T. (2008). A comparative study of the adsorption and desorption of o-xylene onto bentonite clay and alumina. Journal of Hazardous Materials. 153(1-2), 852-859. https://doi.org/10.1016/j.jhazmat.2007.09.070.
[32] Gao, J., Jiang, C. & Zhang, X. (2007). Kinetics of curing and thermal degradation of POSS epoxy resin/DDS system. International Journal of Polymeric Materials and Polymeric Biomaterials. 56(1), 65-77. https://doi.org/10.1080/00914030600710620.
[33] Odewole, P.O., Kashim, I.B. & Akinbogun, T.L. (2019). Production of refractory porcelain crucibles from local ceramic raw materials using slip casting. International Journal of Engineering and Manufacturing. 9(5), 56-69. DOI: 10.5815/ijem.2019.05.05.
[34] Oluwagbenga, O.P. & Majiyebo, A.E. (2019). Development of aluminosilicate refractory crucibles from the optimum mix of Awo quartz and Ikere Ekiti clays. ATBU Journal of Science, Technology and Education. 7(2), 331-340.
[35] Shuaib-Babata, Y.L., Ibrahim, H.K., Ajao, K.S., Elakhame, Z.U., Aremu, N.I. & Odeniyi, O.M. (2019). Assessment of physico-mechanical properties of clay deposits in Asa Local Government Area of Kwara State Nigeria for industrial applications. Journal of Research Information in Civil Engineering. 16(2), 2727-2753.
[36] Aremu, D.A., Aremu, J.O. & Ibrahim, U.H. (2013). Analysis of Mubi clay deposit as furnace lining. International Journal of Scientific and Technology. 2(12), 183-186.
[37] Olajide, O.I., Michael, O.B. & Terna, T.D. (2015). Production and characterization of aluminosilicate refractory brick using Unwana beach silica sand, Ekebedi and Unwana clays. British Journal of Applied Science & Technology. 5(5), 461-471.
[38] Osabor, V.N., Okafor, P.C., Ibe, K.A. & Ayi, A.A. (2009). Characterization of clays in Odukpani, south eastern Nigeria. African Journal of Pure and Applied Chemistry. 3(5), 79-85. ISSN 1996 – 0840.
[39] Tenimu, A.A. (2019). Thermogravimetric and differential thermal investigation of rice husk cellulose. Bayero Journal of Pure and Applied Sciences. 12(1), 6-11. http://dx.doi.org/10.4314/bajopas.v12i1.2.
[40] Amkpa, J.A. & Badarulzaman, N.A. (2016). Thermal conductivity of Aloji fireclay Brick. International Journal of Integrated Engineering. 8(3), 16-20.
[41] Silva, K.R, Liszandra, F.A., Camposb, L.N. & Santanaa, D.L. (2019). Use of experimental design to evaluate the effect of the incorporation of quartzite. residues in ceramic mass for porcelain tile production. Materials Research. 22(1), 1-11. https://doi.org/10.1590/1980-5373-MR-2018-0388.
[42] Czichos, H., Saito, T., Smith, L.E. (2011). Springer handbook of metrology and testing. Springer, New York, United State.
[43] Navas, V. G., Sandá, A., Sanz, C., Fernández, D., Vleugels, J., Vanmeensel, K., & Fernández, A. (2015). Surface integrity of rotary ultrasonic machined ZrO2–TiN and Al2O3–TiC–SiC ceramics. Journal of the European Ceramic Society, 35(14), 3927-3941. https://doi.org/10.1016/j.jeurceramsoc.2015.06.018.
[44] Palm, M. & Inden, G. (1995). Experimental determination of phase equilibria in the Fe Al C system. Intermetallics. 3(6), 443-454. https://doi.org/10.1016/0966-9795(95)00003-H.
[45] Wulf, R., Barth, G. & Gross, U. (2007). Intercomparison of insulation thermal conductivities measured by various methods. International Journal of Thermophysics, 28, 1679-1692. https://doi.org/10.1007/s10765-007-0278-8.
[46] Incropera, F.P., DeWitt, D.P., Bergman, T.L., Lavine, A.S. (2007). Fundamentals of heat and mass transfer. John Wiley & Sons; New York, United State.
[47] Hagemann, L. & Peters, E. (1982). Thermal Conductivity- comparison of methods: ASTM-method, hot wire method and its variations. Interceram. 31, 131-135.
[48] Ferber, M.K., Weresczak, A.A. & Hemrick, J.G. (2006). Comprehensive creep and thermophysical performance of refractory materials. United States. DOI:10.2172/885151.
[49] Litovsky, E., Kleiman, J.I. & Menn, N. (2003). Measurement and analysis by different methods of apparent, radiative, and conductive thermophysical properties of insulation materials. High Temperatures-High Pressures. 35(1), 101-108. DOI:10.1068/htjr080.
[50] Arthur, E.K. & Gikunoo, E. (2020). Property analysis of thermal insulating materials made from Ghanaian anthill clay deposits. Cogent Engineering. 7(1), 1-20. https://doi.org/10.1080/23311916.2020.1827493.

Go to article

Authors and Affiliations

B.V. Omidiji
1
O.B. Ogundipe
2
H.A. Owolabi
1

  1. Obafemi Awolowo University, Ile-Ife, Nigeria
  2. Landmark University, Omu-Aran, Nigeria

This page uses 'cookies'. Learn more