Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The geographical location and climatic conditions of Ukraine cause the active development of land reclamation, as it enables to ensure stable and high yields. The complexity of forecasting in this area, namely the dependence of the results onthe changing weather and climate conditions, does not allow to effectively use the standard instruments for justifying the investment for agricultural and land reclamation innovation.

The necessity of improving methodological approaches to evaluating the effectiveness of investments in projects in the field of agricultural production and land reclamation was substantiated. The proposed approaches were tested on the ad-vanced technology of water treatment in irrigation based on using a vibrating gravitation filter enabling to perform simultaneously the processes of water treatment and filter element regeneration.

The obtained results clearly show that the advancedtechnology of irrigation water treatment and the developed for this technology design of the vibrating gravity filter are cost-effective. The current payback period for irrigation projects when using the purified water under this advanced technology is 5 years. It is the same as for the irrigation projects when using clean irrigation water.

Thus, our proposed approaches to the evaluation of investments in new water treatment technologies applied in irriga-tion enable to adapt the modern methodology of analysis of economic and investment efficiency of projects to the domestic needs of agricultural production, namely to take into account the impact of changing weather and climate conditions on the resulting economic parameters.

Go to article

Authors and Affiliations

Anatoliy Rokochinskiy
ORCID: ORCID
Vyacheslav Bilokon
Nadia Frolenkova
ORCID: ORCID
Nataliіa Prykhodko
ORCID: ORCID
Pavlo Volk
ORCID: ORCID
Ruslan Tykhenko
ORCID: ORCID
Ivan Openko
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The article focuses on the actual scientific and practical problem of accounting for the influence of meteorological and climatic factors in the technical and economic calculations in the field of environmental management. It has been proven that the introduction of scientifically sound and effective methods of using meteorological and cli-matic information in economic calculations significantly reduces the loss caused by weather conditions and improves the implementation of an optimal strategy for agricultural production on reclaimed lands. Such calculations are based on economic and statistical modelling of different variants that accounting for standard hy-drometeorological information in the implementation of design, management and economic decisions. This increases the validity and reliability of calculations, as well as their compliance with the actual operating conditions of environmental and economic facilities. Consequently, this attracts increased interest of both public and private investors. Not only under such conditions is a sustainable development of environmental management sectors possible but also the adaptation to global climate change and additional benefits from the efficient economic activity in the new environmen-tal conditions.
Go to article

Bibliography

ARMEANU D., LACHE L. 2009. The NPV criterion for valuing investments under uncertainty. Economic computation and economic cybernetics studies and research. Academy of Economic Studies. No. 4 p. 133–143.
BIERMAN H. JR., SMIDT S. 2006. The capital budgeting decision: Economic analysis of investment projects. 9th ed. Abingdon-on-Thames. Routledge. ISBN 9780415400046 pp. 424.
BLANC E., SCHLENKER W. 2017. The use of panel models in assessments of climate impacts on agriculture. Review of Environmental Economics and Policy. Vol. 11. Iss. 2. Summer p. 258–279. DOI 10.1093/reep/rex016.
DONG Z., PAN Z., WANG S., AN P., ZHANG J., ZHANG J., PAN Y., HUANG L., ZHAO H., HAN G., WU D., WANG J., FAN D., GAO L., PAN X. 2016. Effective crop structure adjustment under climate change. Ecological Indicators. Vol. 69. October p. 571–577. DOI 10.1016/j.ecolind.2016.04.010.
FROLENKOVA N., KOZHUSHKO L., ROKOCHINSKIY A. 2007. Ekoloho-ekonomichne otsinyuvannya v upravlinni melioratyvnymy proektamy: Monografіya [Ecological and economic assessment in the management of reclamation projects: Monograph]. Rivne. NUVGP. ISBN 966-327-049-7 pp. 258.
FROLENKOVA N., ROKOCHINSKIY A., VOLK P., SHATKOVSKYІ A., PRYKHODKO N., TYKHENKO R., OPENKO I. 2020. Cost-effec-tiveness of investments in drip irrigation projects in Ukraine. International Journal of Green Economics (IJGE). Vol. 14. No. 4 p. 315–326. DOI 10.1504/IJGE.2020.112570.
GOHAR A., CASHMAN A. 2016. A methodology to assess the impact of climate variability and change on water resources, food security and economic welfare. Agricultural Systems. Vol. 147. September p. 51–64. DOI 10.1016/j.agsy.2016.05.008.
HAKA S. F. 2006. A review of the literature on capital budgeting and investment appraisal: Past, present, and future musings. Handbooks of Management Accounting Research. Vol. 2 p. 697–728. DOI 10.1016/S1751-3243(06)02010-4.
KOVALENKO P., ROKOCHINSKIY A., JEZNACH J., KOPTYUK R., VOLK P., PRYKHODKO N., TYKHENKO R. 2019. Evaluation of climate change in Ukrainian part of Polissia region and ways of adaptation to it. Journal of Water and Land Development. No. 41 (IV–VI) p. 77–82. DOI 10.2478/jwld-2019-0030.
MARTYN A., OPENKO I., IEVSIUKOV T., SHEVCHENKO O., RIPENKO A. 2019. Accuracy of geodetic surveys in cadastral registration of real estate: Value of land as determining factor. 18th International Scientific Conference. Engineering for Rural Development. 22–24.05.2019 Jelgava, Latvia p. 1818–1825. DOI 10.22616/ERDev2019.18.N236.
MARTYN A., SHEVCHENKO O., TYKHENKO R., OPENKO I., ZHUK O., KRASNOLUTSKY O. 2020. Indirect corporate agricultural land use in Ukraine: Distribution, causes, consequences. International Journal of Business and Globalisation. Vol. 25. No. 3 p. 378–395. DOI 10.1504/IJBG.2020.109029.
MASSEY E.E. 2012. Experience of the European Union in adaptation to climate change and its application to Ukraine [online]. Office of the Co-ordinator of OSCE Economic and Environmental Activities pp. 36. [Access 20.03.2020]. Available at: https://www.osce.org/ukraine/104019?download=true
MOHAMED S., MCCOWAN A.K. 2001. Modelling project investment decisions under uncertainty using possibility theory. International Journal of Project Management. Vol. 19. Iss. 4 p. 231–241. DOI 10.1016/S0263-7863(99)00077-0.
NOWAK M. 2005. Investment projects evaluation by simulation and multiple criteria decision aiding procedure. Journal of Civil Engineering and Management. Vol. 11. Iss. 3 p. 193–202. DOI 10.1080/13923730.2005.9636350.
OPENKO I., KOSTYUCHENKO Y. V., TYKHENKO R., SHEVCHENKO O., TSVYAKH O., IEVSIUKOV T., DEINEHA M. 2020. Mathematical modelling of postindustrial land use value in the big cities in Ukraine. International Journal of Mathematical, Engineering and Management Sciences. Vol. 5. No. 2. p. 260–271. DOI 10.33889/IJMEMS.2020.5.2.021.
OPENKO I., SHEVCHENKO O., ZHUK О., KRYVOVIAZ Y., TY¬KHENKO R. 2017. Geoinformation modelling of forest shelterbelts effect on pecuniary valuation of adjacent farmlands. International Journal of Green Economics (IJGE). Vol. 11. No. 2 p. 139–153. DOI 10.1504/IJGE.2017.089015.
REZAEI ZAMAN M., MORID S., DELAVAR M. 2016. Evaluating climate adaptation strategies on agricultural production in the Siminehrud catchment and inflow into Lake Urmia, Iran using SWAT within an OECD framework. Agricultural Systems. Vol. 147. September p. 98–110. DOI 10.1016/j.agsy. 2016.06.001.
ROKOCHINSKIY A. 2010. Naukovі ta praktichnі aspekti optimіzacіi vodoregulyuvannya osushuvanikh zemel' na ekologoekonomіchnikh zasadakh: Monografіya [The scientific and practical aspects optimization of water regulation drained lands on environmental and economic grounds. Monograph]. Rivne. NUVGP. ISBN 978-966327-141-5 pp. 352.
ROKOCHINSKIY A. 2016. Systemna optymizatsiya vodorehulyuvannya yak neobkhidna umova stvorennya ta funktsionuvannya vodohospodarsʹko-melioratyvnykh obʺyektiv na ekoloho-ekonomichnykh zasadakh [System optimization of water regulation as a prerequisite for the creation and operation of water management and reclamation facilities on ecological and economic grounds]. Vodne hospodarstvo Ukrayiny. No 104 p. 67–71.
ROKOCHINSKIY A., BILOKON V., FROLENKOVA N., PRYKHODKO N., VOLK P., TYKHENKO R., OPENKO I. 2020. Implementation of modern approaches to evaluating the effectiveness of innovation for water treatment in irrigation. Journal of Water and Land Development. No. 45 (IV–VI) p. 119–125. DOI 10.24425/jwld.2020.133053.
ROKOCHINSKIY A., FROLENKOVA N., KOPTIUK R. 2012. Іnvestitsіyna otsіnka proektіv optimіzatsії vodoregulyuvannya osushuvanih land of urahuvannyam mainly chinnikіv vplivu [Investment assessment project for optimizing water management of drained lands from the main bureaucrats]. Tavriysʹkyy naukovyy visnyk. Vol. 83 p. 216–220.
ROKOCHINSKIY A., JEZNACH J., VOLK, P., TURCHENIUK V., FROLENKOVA N., KOPTIUK R. 2019. Reclamation projects development improvement technology considering optimization of drained lands water regulation based on BIM. Scientific Review Engineering and Environmental Sciences. Vol. 28. Iss. 3(85) p. 193–202. DOI 10.22630/PNIKS.2019.28.3.40.
ROKOCHINSKIY A., STACHUK V., FROLENKOVA N., SHALAY S., KOPTYUK R., VOLK P.. 2010. Tymchasovi rekomendatsiyi z optymizatsiyi vodorehulyuvannya osushuvanykh zemelʹ u proektakh budivnytstva y rekonstruktsiyi vodohospodarsʹko-melioratyvnykh obʺyektiv [Temporary recommendations for optimization of water management of drained lands in projects of construction and reconstruction of water management and reclamation facilities]. Rivne. NUVGP pp. 52.
ROKOCHYNSKIY A., TURCHENIUK V., PRYKHODKO N., VOLK P., GERASIMOV I., KOÇ C. 2020. Evaluation of climate change in the rice-growing zone of Ukraine and ways of adaptation to the predicted changes. Agricultural Research. DOI 10.1007/ s40003-020-00473-4.
ROKOCHINSKIY A., VOLK P., FROLENKOVA N., SHALAY S., KOPTYUK R., ZAYETS V. PRYKHODKO N. 2013. Naukovo-metodychni rekomendatsiyi do obgruntuvannya optymalʹnykh parametriv silʹsʹkohospodarsʹkoho drenazhu na osushuvanykh zemlyakh za ekonomichnymy ta ekolohichnymy vymohamy [Scientific and methodological recommendations for substantiation of optimal parameters of agricultural drainage on drained lands according to economic and environmental requirements]. Rivne. NUVGP pp. 34.
SHALAY S., ROKOCHINSKIY A., STASHUK V., BEZHUK V. 2004. Tymchasovi rekomendatsiyi z obhruntuvannya efektyvnoyi proektnoyi vrozhaynosti na osushuvanykh zemlyakh pry budivnytstvi y rekonstruktsiyi melioratyvnykh system [Temporary recommendations for substantiation of effective project yield on drained lands during construction and reconstruction of reclamation systems]. Rivne. NUVGP pp. 44.
SHEVCHENKO О., OPENKO I., ZHUK О., KRYVOVIAZ Y., TY¬KHENKO R. 2017. Economic assessment of land degradation and its impact on the value of land resources in Ukraine [online]. International Journal of Economic Research (IJER). Vol. 14. No. 15. P. 4. p. 93–100. [Access 18.06.2020] Available at: https://serialsjournals.com/abstract/34405_ch_11_f_-_ivan_openko.pdf
ZHUKOVSKY E. 1981. Meteorologicheskaya informatsiya i ekonomicheskiye resheniya [Meteorological information and economic decisions]. Leningrad. Gidrometeoizdat pp. 304.

Go to article

Authors and Affiliations

Anatoliy Rokochinskiy
1
ORCID: ORCID
Nadia Frolenkova
1
ORCID: ORCID
Vasyl Turcheniuk
1
ORCID: ORCID
Pavlo Volk
1
ORCID: ORCID
Nataliіa Prykhodko
1
ORCID: ORCID
Ruslan Tykhenko
2
ORCID: ORCID
Ivan Openko
2
ORCID: ORCID

  1. National University of Water and Environmental Engineering, Str. Soborna, 11, 33000, Rivne, Ukraine
  2. National University of Life and Environmental Sciences of Ukraine, Str. Vasylkivska, 17, 03040, Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The presence of water, food and energy crises, both at the global and regional levels, as well as their deterioration under conditions of climate change, with an insufficient level of technical condition of existing irrigation systems, increase the strategic importance of irrigation as the guarantor of the agricultural sector sustainable development.
This makes it necessary to increase, foremost, energy and overall (technical, technological, economic, and environmental) efficiency of the closed irrigation network of irrigation systems. In this regard, the complex that includes organisational-technological, technical, and resource-saving groups of measures was developed. Estimation of energy and overall efficiency of the closed irrigation network of irrigation systems at the implementation of developed complex were executed on the example of the agricultural enterprise located in the Petropavlovsk district of the Dnipropetrovsk region of Ukraine. For this purpose, machine experiment based on a use of the set of optimisation, forecasting and simulation models was implemented, including the model of climatic conditions, the model of water regime and water regulation technologies, as well as the model of crop yields on reclaimed lands.
According to the obtained results, established that implementation of the complex reduces the consumption of irrigation water by 2.2–30.7% and electricity consumption by 12.9–38.2%. The rate of specific costs decreases from 1.6 to 1.32–1.47, and the coefficient of environmental reliability increases by 5.6–16.7%. At the same time, the profitability index increases from 1.07 to 1.75–2.57, and the discounted payback period decreases from 18 to 8–5 years.
Go to article

Authors and Affiliations

Pyotr Kovalenko
1
ORCID: ORCID
Anatoliy Rokochynskiy
2
ORCID: ORCID
Ievgenii Gerasimov
2
ORCID: ORCID
Pavlo Volk
2
ORCID: ORCID
Nataliia Prykhodko
2
ORCID: ORCID
Ruslan Tykhenko
3
ORCID: ORCID
Ivan Openko
3
ORCID: ORCID

  1. Institute of Water Problems and Melioration of the National Academy of Agrarian Sciences of Ukraine, Ukraine, Vasylkivska St, 37, 03022, Kyiv, Ukraine
  2. National University of Water and Environmental Engineering, Rivne, Ukraine
  3. National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The article is devoted to a topical scientific problem in modern conditions – valuation of land in Ukraine. The imperfection of the existing approaches requires further research on the changing conditions of land use and their impact on land pricing.
A methodology for determining the market value of reclaimed land based on a differentiated assessment of its productivity through crop yields is proposed, taking into account natural and climatic zones and other conditions of a particular region. The basis of the methodology is the application of long-term forecast and a set of forecast and simulation models, in particular the model of area climatic conditions and the model of water regime and water regulation technologies on reclaimed land. At that the crop yield model as a complex multiplicative type model takes into account all main factors influencing crop yield formation: weather, climatic and soil conditions, cultivation techniques, water regime of reclaimed land, etc.
The proposed approaches were tested by the method of large – scale machine experiment using a land plot in the zone of Western Polissya of Ukraine as the example. The obtained results indicate that there is a differentiation in land value, which is a proportional derivative of the yield of cultivated crops depending on the conditions of their cultivation. The variation range of the studied indicators in relative form by the ratio of maximum and minimum values to the weighted average value is for cultivated crops – 393%, and for the above soils – 44.6%. Thus, within one object, the estimated value of land in view of available soils and cultivated crops varies from USD2456∙ha–1 to USD4005 ∙ ha–1, averaging USD3522 ∙ ha–1.
Go to article

Authors and Affiliations

Anatoliy Rokochinskiy
1
ORCID: ORCID
Pavlo Volk
1
ORCID: ORCID
Nadia Frolenkova
1
ORCID: ORCID
Olha Tykhenko
2
ORCID: ORCID
Sergiy Shalai
1
ORCID: ORCID
Ruslan Tykhenko
2
ORCID: ORCID
Ivan Openko
2
ORCID: ORCID

  1. National University of Water and Environmental Engineering, Rivne, Ukraine
  2. National University of Life and Environmental Sciences of Ukraine, Str. Vasylkivska, 17, 03040, Kyiv, Ukraine

This page uses 'cookies'. Learn more