Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Linear arrays of ultrasonic transducers are commonly used as ultrasonic probes in medical diagnostics for imaging the interior of a human body in vivo. The crosstalk phenomenon occurs during the operation of transducers in which electrical voltages and mechanical vibrations are transmitted to adjacent components. As a result of such additional excitation of the transducers in the array, the directivity characteristics of the aperture used changes, and consequently there is interference with properoperation of a given array and the emergence of distortions in the obtained ultra sound image that reduce its quality. This paper studies the manner of propagation of mechanical crosstalk in the designed model of a linear array of ultrasonic transducers on the basis of unwanted signals, which appeared on elementary piezo-electric transducers when power is supplied to the selected transducer in the array. The universal model of linear array of ultrasonic transducers, which has been developed, allowed the simulation of mechanical crosstalk, taking in to account the cross-coupling phenomenon in all of its structure with the use of finite elements method (FEM) implemented in COMSOL Multiphysics software. The analysis of crosstalk signals showed that they consist of aggregated pulses propagating with different speeds and frequencies. This signifies the formation of different vibration modes transmitted simultaneously via different paths. The paper is an original approach which enables to identify different vibration modes and estimate their participation in the crosstalk signal and their ways of propagation. Conclusions from the research allow predicting specific design changes which are significant due to the minimization of mechanical crosstalk in linear arrays of ultrasonic transducers.

Go to article

Authors and Affiliations

Mateusz Celmer
Krzysztof J. Opieliński
Download PDF Download RIS Download Bibtex

Abstract

The paper describes an innovative ultrasound imaging method called Doppler Tomography (DT), otherwise known as Continuous Wave Ultrasonic Tomography (CWUT). Thanks to this method, it is possible to image the tissue cross-section in vivo using a simple two-transducer ultrasonic probe and using the Doppler effect. It should be noted that DT significantly differs from the conventional ultrasound Doppler method of measuring blood flow velocity. The main difference is that when measuring blood flow, we receive information with an image of the velocity distribution in a given blood vessel (Nowicki, 1995), while DT allows us to obtain a cross-sectional image of stationary tissue structure. In the conventional method, the probe remains stationary, while in the DT method, the probe moves and the examined tissue remains stationary.

This paper presents a method of image reconstruction using the DT method. First, the basic principle of correlation of generated Doppler frequencies with the location of inclusions from which they originate is explained. Then the exact process and algorithm in this method are presented. Finally, the impact of several key parameters on imaging quality is examined. As a result, the conclusions of the research allow to improve the image reconstruction process using the DT method.

Go to article

Authors and Affiliations

Tomasz Świetlik
Krzysztof J. Opieliński
Download PDF Download RIS Download Bibtex

Abstract

This paper presents and analyses the results of a simulation of the acoustic field distribution in sectors of a 1024-element ring array, intended for the diagnosis of female breast tissue with the use of ultrasonic tomography. The array was tested for the possibility to equip an ultrasonic tomograph with an additional modality - conventional ultrasonic imaging with the use of individual fragments (sections) of the ring array. To determine the acoustic field for sectors of the ring array with a varying number of activated ultrasonic transducers, a combined sum of all acoustic fields created by each elementary transducer was calculated. By the use of MATLAB software, a unique algorithm was developed, for a numerical determination of the distribution of pressure of an ultrasonic wave on any surface or area of the medium generated by the concave curvilinear structure of rectangular ultrasound transducers with a geometric focus of the beam. The analysis of the obtained results of the acoustic field distribution inside the ultrasonic ring array used in tomography allows to conclude that the optimal number of transducers in a sector enabling to obtain ultrasound images using linear echographic scanning is 32 ≤ n ≤ 128, taking into account that due to an increased temporal resolution of ultrasonic imaging, this number should be as low as possible.

Go to article

Authors and Affiliations

Wiktor Staszewski
Tadeusz Gudra
Krzysztof J. Opieliński
Download PDF Download RIS Download Bibtex

Abstract

Ultrasonic projection imaging is similar to X-ray radiography. Nowadays, ultrasonic projection methods have been developed in the set-up of multi-element flat arrays with miniature transducers, where one of the array acts as a transmitter and the other one is a receiver. In the paper, a new method of the projection imaging using a 1024-element circular ultrasonic transducer array is presented. It allows the choice of a projection scanning plane for any angle around a studied object submerged in water. Fast acquisition of measurement data is achieved as a result of parallel switching of opposite transmitting and receiving transducers in the circular array and vertical movement of the array. The algorithm equalizing the length of measurement rays and the distances between them was elaborated for the reconstruction of projection images. Projection research results of breast phantom obtained by means of the elaborated measurement set-up and compared with mammography simulations (acquired through overlapping of X-ray tomographic images) show that ultrasonic projection method presented in this paper (so-called ultrasonic mammogra-phy) can be applied to the woman's breast and be used as a diagnosis for an early detection of cancerous lesions. It can, most of all, be used as an alternative or complementary method to standard mammography, which is harmful because of ionizing radiation and invasive due to the mechanical compression of tissue.
Go to article

Authors and Affiliations

Krzysztof J. Opieliński
Tadeusz Gudra
Piotr Pruchnicki
Download PDF Download RIS Download Bibtex

Abstract

The ultrasonic ring array, designed for examining the female breast with the use of ultrasonic transmission tomography (UTT), has been adapted for reflection method trials. By altering the activation time of ultrasonic elementary transducers, the parameters of the focus were changed with the aim at improving the quality of the obtained ultrasound image. For this purpose, a phantom consisting of rods having varying thicknesses was analyzed when moving the position of the focus with the use of dynamic focusing along the symmetry axis of the ring array ranging from 30 to 130 mm from central transducers. In previous trials, which applied an algorithm using the sum of all the acoustic fields, a series of simulations was performed in conditions identical to the phantom trial. This paper documents attempts at improving the parameters of the acoustic field distribution during unconventional focusing. The research here presented is a continuation of examinations focusing on the acoustic field distribution inside the ultrasonic ring array with the aim at finding the best possible cross-section of the female breast using the reflection method.
Go to article

Bibliography

1. Birk M., Kretzek E., Figuli P., Weber M., Becker J., Ruiter N.V. (2016), High-speed medical imaging in 3D ultrasound computer tomography, IEEE Transactions on Parallel and Distributed Systems, 27(2): 455–467, doi: 10.1109/TPDS.2015.2405508.
2. Costaridou L. (2005), Medical Image Analysis Method, CRC Press Taylor & Fracis, New York.
3. Duric N. et al. (2007), Detection of breast cancer with ultrasound tomography: First results with the Computed Ultrasound Risk Evaluation (CURE) prototype, Medical Physics, 34(2) 773–785, doi: 10.1118/1.2432161.
4. Duric N. et al. (2013), Breast imaging with the Soft- Vue imaging system: first results, [in:] Medical Imaging 2013: Ultrasonic Imaging, Tomography, and Therapy. Proceedings of SPIE.SPIE, Bosch J.G., Doyley M.M. [Eds], Vol. 8675, pp. 164–171, doi: 10.1117/12.2002513.
5. Entrekin R., Jackson P., Jago J.R., Porter B.A. (1999), Real time spatial compound imaging in breast ultrasound: Technology and early clinical experience, Medicamundi, 43(3): 35–43.
6. Gudra T., Opielinski K. (2006), The ultrasonic probe for investigating of internal object structure by ultrasound transmission tomography, Ultrasonics, 44(Suppl. 1): e679–e683, doi: 10.1016/j.ultras.2006.05.126.
7. Gudra T., Opielinski K. (2016), The multi-element probes for ultrasound transmission tomography, Journal de Physique IV, 137: 79–86, doi: 10.1051/jp4: 2006137015.
8. Gudra T., Opielinski K.J. (2009), A method of visualizing the internal structure of the center and a device for implementing this method [in Polish: Sposób wizualizacji struktury wewnetrznej osrodka i urzadzenie do realizacji tego sposobu], Patent No 210202, Poland.
9. Jirik R. et al. (2012), Sound-speed image reconstruction insparse-aperture 3-D ultrasound transmission tomography, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59(2): 254–264, doi: 10.1109/TUFFC.2012.2185.
10. Kak A.C., Slaney M. (2001), Principles Computerized Tomographic Imaging, IEEE Press, New York.
11. Marmarelis V., Jeong J., Shin D., Do S. (2007), High-resolution 3-D imaging and tissue differentiation with transmission tomography, [in:] Acoustical Imaging, André M.P. et al. [Eds], Vol. 28, 195–206, Springer, Dordrecht, doi: 10.1007/1-4020-5721-0_21.
12. Narodowy Instytut Onkologii im. Marii Skłodowskiej- Curie (n.d.), National Cancer Registry [in Polish: Krajowy Rejestr Nowotworów], available at https://www.pib-nio.pl/krajowy-rejestr-nowotworow/.
13. Opielinski K.J. (2011), Application of Transmission of Ultrasonic Waves for Characterization and Imaging of Biological Media Structures [in Polish], Printing House of Wroclaw University of Science and Technology, Wroclaw.
14. Opielinski K.J. et al. (2015), Imaging results of multi-modalultrasound computerized tomography system designed for breast diagnosis, Computerized Medical Imaging and Graphics, 46(2): 83–94, doi: 10.1016/j.compmedimag.2017.06.009.
15. Opielinski K.J. et al. (2016), Breast ultrasound tomography: preliminary in vivo results, [in:] Information Technologies in Medicine, Pietka E., Badura P., Kawa J., Wieclawek W. [Eds], Vol. 1, pp. 193–2015, Springer International Publishing, doi: 10.1007/978-3- 319-39796-2_16.
16. Opielinski K.J. et al. (2018), Multimodal ultrasound computer-assisted tomography: An approach to the recognition of breast lesion, Computerized Medical Imaging and Graphics, 65: 102–114, doi: 10.1016/j.compmedimag.2017.06.009.
17. Opielinski K.J., Pruchnicki P., Gudra T., Majewski J. (2014), Full angle ultrasound spatial compound imaging, [In:] Proceedings of 7th Forum Acusticum 2014 Joined with 61st Open Seminar on Acoustics and Polish Acoustical Society – Acoustical Society of Japan Special Session Stream [CD-ROM], Krakow: European Acoustics Association.
18. Pratap R. (2013), MATLAB for scientists and engineers [in Polish: MATLAB dla naukowców i inzynierów], Warszawa: WN PWN.
19. Staszewski W., Gudra T. (2019), The effect of dynamic focusing of the beam on the acoustic field distribution inside the ultrasonic ring array, Vibrations in Physical Systems, 30(1): 2019106, 8 pages.
20. Staszewski W., Gudra T., Opielinski K.J. (2018), The acoustic field distribution inside the ultrasonic ring array, Archives of Acoustic, 43(3): 455–463, doi: 10.24425/123917.
21. Staszewski W., Gudra T., Opielinski K.J. (2019), The Effect of dynamic beam deflection and Focus shift on the acoustics field distribution inside the ultrasonic ring array, Archives of Acoustics, 44(4): 625–636, doi: 10.24425/aoa.2019.129721.
22. Wiskin J. et al. (2013), Three-dimensional nonlinear inverse scattering: quantitative transmission algorithms, refraction corrected reflection, scanner design and clinical results, Proceedings of Meetings on Acoustics, 19(1): 075001, doi: 10.1121/1.4800267.
Go to article

Authors and Affiliations

Wiktor Staszewski
1 2
Tadeusz Gudra
1
Krzysztof J. Opieliński
1

  1. Department of Acoustics and Multimedia, Faculty of Electronics, Wrocław University of Science and Technology, Wrocław, Poland
  2. T. Marciniak Lower Silesian Specjalist Hospital – Emergency Medicine Centre, Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this work is to examine the possibility of using multi-angle conventional ultrasound B-mode scanning in efficient 3-D imaging. In the paper, the volume of an object is reconstructed from vertical projections registered at fixed angular positions of the multi-element linear ultrasonic probe rotated in relation to the object submerged in water. The possible configurations are: vertical lateral, vertical top or vertical bottom. In the vertical lateral configuration, the ultrasonic probe acquires 2-D images of object’s vertical cross-sections, turning around its lateral surface. In the vertical top or bottom configuration, the ultrasonic probe acquires 2-D images of the object’s vertical cross-sections, turning on the horizontal plane over the top or under the bottom surface of the object. The method of recording 3-D volume of an object’s structure and reconstruction algorithm have been designed. Studies show the method in the vertical top or bottom configuration could be successfully applied to the effective 3-D visualisation of the structure of the female breast in vivo as the new complement ultrasonic imaging modality in the prototype of the developed ultrasound tomography scanner.

Go to article

Authors and Affiliations

Maciej Sabiniok
Krzysztof J. Opieliński
Sylwia Lis
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of acoustic field distribution simulations for the 1024-element ultrasonic ring array intended for the diagnosis of female breast tissue with the use of ultrasound tomography. For the purpose of analysing data, all acoustic fields created by each elementary transducer were combined. The natural position of the focus inside the ultrasonic ring array was changed by altering activation time of individual transducers in sectors consisting of 32, 64, and 128 ultrasonic transducers. Manipulating the position of the focus inside the array will allow to concentrate the ultrasonic beam in a chosen location in the interior space of the ring array. The goal of this research is to receive the best possible quality of images of cross-sections of the female breast. The study also analysed the influence of the acoustic field distribution on the inclination of the beam. The results will enable to choose an optimal focus and an optimal number of activated transducers.

Go to article

Authors and Affiliations

Wiktor Staszewski
Tadeusz Gudra
Krzysztof J. Opieliński
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an analysis of the results of ultrasound transmission tomography (UTT) imaging of the internal structure of a breast elastography phantom used for biopsy training, and compares them with the results of CT, MRI and, conventional US imaging; the results of the phantom examination were the basis for the analysis of UTT method resolution. The obtained UTT, CT and MRI images of the CIRS Model 059 breast phantom structure show comparable (in the context of size and location) heterogeneities inside it. The UTT image of distribution of the ultrasound velocity clearly demonstrates continuous changes of density. The UTT image of derivative of attenuation coefficient in relation to frequency is better for visualising sharp edges, and the UTT image of the distribution of attenuation coefficient visualises continuous and stepped changes in an indirect way. The inclusions visualized by CT have sharply delineated edges but are hardly distinguishable from the phantom gel background even with increased image contrast. MRI images of the studied phantom relatively clearly show inclusions in the structure. Ultrasonography images do not show any diversification of the structure of the phantom. The obtained examination results indicate that, if the scanning process is accelerated, ultrasound transmission tomography method can be successfully used to detect and diagnose early breast malignant lesions. Ultrasonic transmission tomography imaging can be applied in medicine for diagnostic examination of women’s breasts and similarly for X-ray computed tomography, while eliminating the need to expose patients to the harmful ionising radiation.
Go to article

Authors and Affiliations

Krzysztof J. Opieliński
Tadeusz Gudra
Piotr Pruchnicki
Przemysław Podgórski
Tomasz Kraśnicki
Jacek Kurcz
Marek Sąsiadek

This page uses 'cookies'. Learn more