Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Photovoltaic (PV) technologies which play a role in PV market are divided into basic two types: wafer-based (1st generation PV) and thin-film cell (2nd generation PV). To the first category belong mainly crystalline silicon (c-Si) cells (both mono- and multi-crystalline). In 2015 around 90% of the solar market belonged to crystalline silicon. To the 2nd generation solar cells belongs thin film amorphous silicon (a-Si) or a combination of amorphous and microcrystalline silicon (a-Si/μc-Si), compound semiconductor cadmium telluride (CdTe), compound semiconductor made of copper, indium, gallium and selenium (CIS or CIGS) and III–V materials. The PV market for thin film technology is dominated by CdTe and CIGS solar cells. Thin film solar cells’ share for all thin film technologies was only 10% in 2015. New emerging technologies, called 3rd generation solar cells, remain the subject of extensive R&D studies but have not been used in the PV market, so far.

In this review the best laboratory 1st and 2nd generation solar cells that were recently achieved are described. The scheme of the layer structure and energy band diagrams will be analyzed in order to explain the boost of their efficiency with reference to the earlier standard designs.

Go to article

Authors and Affiliations

E. Płaczek-Popko
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a review of models of the current transport in different kind of heterojunctions (HJs) and their characteristics. In order to effectively deduce the dominant electron transport for the HJs based on ZnO or Zn1−xMgxO layers grown on Si substrate by MBE a comparison is performed – which type of the HJ exhibits better electrical properties. The current–voltage characteristics for the studied HJs were measured within 280–300 K. The transport properties of the HJs are explained in terms of Anderson model with reference to aforementioned current transport models. It is found, that the mechanisms of current transport for all of the studied HJs are similar. At a low forward voltage bias the tunneling current dominates while at medium voltage bias (0.5–1 V) multitunneling capture-emission prevails with the electron trap located at 0.1–0.25 eV below the bottom of a ZnO (Zn1−xMgxO) conduction band. Beyond this voltage bias space charge limited current governs the current transport.

Go to article

Authors and Affiliations

E. Płaczek-Popko
K.M. Paradowska
M.A. Pietrzyk
A. Kozanecki

This page uses 'cookies'. Learn more