Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this work we report on fabrication of quantum wires and quantum point contacts from the modulation doped CdMgTe/Cd(Mn)Te structures, with the application of a high-resolution electron-beam lithography. We emphasize on methods which were not yet utilized for these substrate materials. In particular, we describe the so-called shallow-etching approach, which allows for the fabrication of quantum constrictions of a physical width down to 100 nm, which are characterized by the smoother confining potential as compared to the deep-etched devices. For that purpose, a single-line exposure mode of electron-beam lithography has been used. We demonstrate also, how to combine the etching of separating grooves with the thermal evaporation of metal side-gates into a single post-processing stage of a quantum point contact fabrication.

This article is an expanded version of the scientific reports presented at the International Conference on Semiconductor Nanostructures for Optoelectronics and Biosensors 2016 ICSeNOB2016, May 22–25, 2016, Rzeszow, Poland.

Go to article

Authors and Affiliations

Joanna Wróbel
E. Bobko
Dariusz Płoch
ORCID: ORCID
M. Wiater
T. Wojtowicz
Download PDF Download RIS Download Bibtex

Abstract

The paper covers some measurement aspects of transport of electrons through metals and semiconductors in magnetic field – magnetotransport – allowing for the determination of electrical parameters characteristic of three-dimensional (3D) topological insulators (TI) (i.e. those that behave like an insulator inside their volume and have a conductive layer on their surface). A characteristic feature of the 3D TI is also a lack of differences between the chemical composition of the conductive surface and the interior of the material tested and the fact that the electron states for its surface conductivity are topologically protected. In particular, the methods of generating strong magnetic fields, obtaining low temperatures, creating electrical contacts with appropriate geometry were presented, and the measurement methods were reviewed. In addition, the results of magnetotransport measurements obtained for two volumetric samples based on the HgCdTe compound grown with the molecular beam epitaxy method are presented.
Go to article

Bibliography

[1] Fu, L., Kane, C. L.,&Mele, E. J. (2007). Topological Insulators in Three Dimensions. Physical Review Letters, 98(10), 106803. https://doi.org/10.1103/physrevlett.98.106803
[2] Hsieh, D., Qian, D., Wray, L., Xia, Y., Hor, Y. S., Cava, R. J., & Hasan, M. Z. (2008). A topological Dirac insulator in a quantum spin Hall phase. Nature, 452(7190), 970–974. https://doi.org/10.1038/nature06843
[3] Xu, Y., Miotkowski, I., Liu, C., Tian, J., Nam, H., Alidoust, N., Hu, J., Shih, C.-K., Hasan, M. Z., & Chen, Y. P. (2014). Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nature Physics, 10(12), 956–963. https://doi.org/10.1038/nphys3140
[4] Qu, D.-X., Hor, Y. S., Xiong, J., Cava, R. J., & Ong, N. P. (2010). Quantum Oscillations and Hall Anomaly of Surface States in the Topological Insulator Bi2Te3. Science, 329(5993), 821–824. https://doi.org/10.1126/science.1189792
[5] Analytis, J. G., McDonald, R. D., Riggs, S. C., Chu, J.-H., Boebinger, G. S., & Fisher, I. R. (2010). Two-dimensional surface state in the quantum limit of a topological insulator. Nature Physics, 6(12), 960–964. https://doi.org/10.1038/nphys1861
[6] Shrestha, K. (2015). Magnetotransport Studies on Topological Insulators [Doctoral dissertation, University of Houston]. https://uh-ir.tdl.org/handle/10657/4881
[7] Zhang, J. (2016). Transport Studies of the Electrical, Magnetic and Thermoelectric Properties of Topological Insulator Thin Films. Springer-Verlag GmbH
[8] König, M., Wiedmann, S., Brüne, C., Roth, A., Buhmann, H., Molenkamp, L. W., Qi, X.-L., & Zhang, S.-C. (2007). Quantum Spin Hall Insulator State in HgTe QuantumWells. Science, 318(5851), 766–770. https://doi.org/10.1126/science.1148047
[9] Shamim, S., Beugeling, W., Böttcher, J., Shekhar, P., Budewitz, A., Leubner, P., Lunczer, L., Hankiewicz, E. M., Buhmann, H., & Molenkamp, L. W. (2020). Emergent quantum Hall effects below 50 mT in a two-dimensional topological insulator. Science Advances, 6(26). https://doi.org/10.1126/sciadv.aba4625
[10] Weis, J., & von Klitzing, K. (2011). Metrology and microscopic picture of the integer quantum Hall effect. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1953), 3954–3974. https://doi.org/10.1098/rsta.2011.0198
[11] K. I.Wysokinski. (2006). Quantum Hall effect: the fundamentals.Metrology and Measurement Systems, 13(2), 113–124. http://www.metrology.pg.gda.pl/full/2006/M&MS_2006_113.pdf
[12] Brüne, C., Liu, C. X., Novik, E. G., Hankiewicz, E. M., Buhmann, H., Chen, Y. L., Qi, X. L., Shen, Z. X., Zhang, S. C., & Molenkamp, L. W. (2011). Quantum Hall effect from the topological surface states of strained bulk HgTe. Physical Review Letters, 106(12), 126803. https://doi.org/10.1103/PhysRevLett.106.126803
[13] Brüne, C., Thienel, C., Stuiber, M., Böttcher, J., Buhmann, H., Novik, E. G., Liu, C.-X., Hankiewicz, E. M., & Molenkamp, L. W. (2014). Dirac-Screening Stabilized Surface-State Transport in a Topological Insulator. Physical Review X, 4(4), 41045. https://doi.org/10.1103/PhysRevX.4.041045
[14] Mikitik, G. P., & Sharlai, Y. V. (1999). Manifestation of Berry’s Phase in Metal Physics. Physical Review Letters, 82(10), 2147–2150. https://doi.org/10.1103/physrevlett.82.2147
[15] Taskin, A. A., & Ando, Y. (2011). Berry phase of nonideal Dirac fermions in topological insulators. Physical Review B, 84(3), 35301. https://doi.org/10.1103/physrevb.84.035301
[16] Tomaka, G., Grendysa, J., Sliz, P., Becker, C. R., Polit, J., Wojnarowska, R., Stadler, A., & Sheregii, E. M. (2016). High-temperature stability of electron transport in semiconductors with strong spin-orbital interaction. Physical Review B, 93(20), 205419. https://doi.org/10.1103/physrevb.93.205419
[17] Melhem, Z. (2019). Cryogenics at Oxford Instruments. Oxford Instruments. https://indico.cern.ch/event/792215/contributions/3408669/attachments/1938018/3212326/Melhem_Ziad_Cryo_at_OI_ EasiTrain_2Oct19_.pdf
[18] Balshaw, N. H. (1996). Practical Cryogenics: An Introduction to Laboratory Cryogenics. Oxford Instruments, Scientific Research Division
[19] LakeShore. (n.d.). Lake Shore 7500/9500 Series Hall System User’s Manual. http://sites.science.oregonstate.edu/~tatej/TateLabWiki/lib/exe/fetch.php?media=manuals:lakeshore_7504_complete.pdf
[20] MagLab. (2018). National MagLab – Elevate your research with higher fields. Brochure. https://nationalmaglab.org/images/research/publications/searchable_docs/print_media/maglab_ elevate_brochure_2018.pdf
[21] Markiewicz,W. D., Larbalestier, D. C.,Weijers, H. W., Voran, A. J., Pickard, K. W., Sheppard,W. R., Jaroszynski, J., Xu, A., Walsh, R. P., Lu, J., Gavrilin, A. V, & Noyes, P. D. (2012). Design of a Superconducting 32 T Magnet With REBCO High Field Coils. IEEE Transactions on Applied Superconductivity, 22(3), 4300704. https://doi.org/10.1109/tasc.2011.2174952
[22] Hahn, S., Kim, K., Kim, K., Hu, X., Painter, T., Dixon, I., Kim, S., Bhattarai, K. R., Noguchi, S., Jaroszynski, J., & Larbalestier, D. C. (2019). 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet. Nature, 570(7762), 496–499. https://doi.org/10.1038/s41586-019-1293-1 [23] Nakamura, D., Ikeda, A., Sawabe, H., Matsuda, Y. H.,& Takeyama, S. (2018). Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression. Review of Scientific Instruments, 89(9), 95106. https://doi.org/10.1063/1.5044557
[24] Liu, Q., Zhang, S., Ding, L., Zuo, H., & Han, X. (2019). Magnetoresistance Measurement of Topological Quantum Materials in Pulsed High Magnetic Field. 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 1–6. https://doi.org/10.1109/I2MTC.2019.8827073
[25] Courts, S. S. (2003). Review of CernoxTM (Zirconium Oxy-Nitride) Thin-Film Resistance Temperature Sensors. AIP Conference Proceedings, 684, 393–398. https://doi.org/10.1063/1.1627157
[26] Kowalewski, A.,Wróbel, J., Boguski, J., Gorczyca, K.,&Martyniuk, P. (2019). Semiconductor contact layer characterization in a context of hall effect measurements. Metrology and Measurement Systems, 26(1), 109–114. https://doi.org/10.24425/mms.2019.126324
[27] Mleczko, K., & Ptak, P. (2015). Low-temperature properties of RuO2-based resistors. Scientific Journals of Rzeszów University of Technology, Series: Electrotechnics, 275–294. https://doi.org/10.7862/re.2015.21
[28] ZurichInstruments. (n.d.). Hall Effect for Sensing and Materials Characterization. https://www.zhinst.com/europe/en/publications/hall-effect-sensing-and-materials-characterization
[29] Vaklinova, K. (2017). Spin Transport in Topological Insulator-Based Nanostructures, [Doctoral dissertation, École Polytechnique Fédérale de Lausanne]. https://doi.org/10.5075/epfl-thesis-7585
[30] Chiatti, O., Riha, C., Lawrenz, D., Busch, M., Dusari, S., Sánchez-Barriga, J., Mogilatenko, A., Yashina, L. V, Valencia, S., Ünal, A. A., Rader, O., & Fischer, S. F. (2016). 2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes. Scientific Reports, 6(1). https://doi.org/10.1038/srep27483
[31] Meyyappa, M. (2007). Nanotechnology Measurement Handbook. A Guide to Electrical Measurements for Nanoscience Applications. Keithley Instruments, Inc. https://download.tek.com/document/1KW-30011-0%20NanotechHandbook.pdf
[32] Suslov, A. V. (2010). Stand alone experimental setup for dc transport measurements. Review of Scientific Instruments, 81(7), 75111. https://doi.org/10.1063/1.3463691
[33] Nawrocki, W. (2005). Measurement Systems and Sensors. Artech House
[34] Sewell, R. H., Musca, C. A., Dell, J. M., Faraone, L., Usher, B. F.,&Dieing, T. (2005). High-resolution X-ray diffraction studies of molecular beam epitaxy-grown HgCdTe heterostructures and CdZnTe substrates. Journal of Electronic Materials, 34(6), 795–803. https://doi.org/10.1007/s11664-005-0023-7
Go to article

Authors and Affiliations

Paweł Śliż
1
Iwona Sankowska
2
Ewa Bobko
1
Eugeniusz Szeregij
1
Jakub Grendysa
1
Grzegorz Tomaka
1
Dariusz Żak
1
Dariusz Płoch
1
ORCID: ORCID
Agata Jasik
2
ORCID: ORCID

  1. University of Rzeszow, College of Natural Sciences, Institute of Physics, 1 Pigonia St., Rzeszow 35-959, Poland
  2. Łukasiewicz Research Network – Institute of Microelectronics and Photonics, al. Lotników 32/46, 02-668 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, solar cells based on copper oxide and titanium dioxide were successfully manufactured using the reactive direct-current magnetron sputtering (DC-MS) technique with similar process parameters. TiO2/CuO, TiO2/Cu2O/CuO/Cu2O, and TiO2/Cu2O solar cells were manufactured via this process. Values of efficiencies, short-circuit current, short-circuit current density, open-circuit voltage, and maximum power of PV devices were investigated in the range of 0.02÷0.9%, 75÷350 µA, 75÷350 µA/cm2, 16÷550 mV, and 0.6÷27 µW, respectively. The authors compare solar cells reaching the best and the worst conversion efficiency results. Thus, only the two selected solar cells were fully characterized using I-V characteristics, scanning electron microscopy, X-ray diffraction, ellipsometry, Hall effect measurements, and quantum efficiency. The best conversion efficiency of a solar cell presented in this work is about three times higher in comparison with the authors’ previous PV devices.
Go to article

Bibliography

  1. Olczak, P., Kryzia, D., Matuszewska, D. & Kuta, M. “My Electricity” program effectiveness supporting the development of PV installation in Poland. Energies 14, 231 (2021). https://doi.org/10.3390/en14010231
  2. Cader, J., Olczak, P. & Koneczna, R. Regional dependencies of interest in the ‘My Electricity’ photovoltaic subsidy program in Poland. Polityka Energetyczna – Energy Policy Journal 24, 97–116 (2021). https://doi.org/10.33223/epj/133473
  3. Zhang, Y. & Park, N.-G. A thin film (<200 nm) perovskite solar cell with 18% efficiency. J. Mater. Chem. A 34 17420–17428 (2020). https://doi.org/10.1039/D0TA05799A
  4. Luo, Y. et al. Electrochemically deposited Cu2O on TiO2 nanorod arrays for photovoltaic application. Electrochem. Solid-State Lett. 15, H34–H36 (2012). https://doi.org/10.1149/2.016202esl
  5. Pavan, M. et al. TiO2/Cu2O all-oxide heterojunction solar cells produced by spray pyrolysis. Sol. Energy Mater. Sol. Cells 132, 549–556 (2015). https://doi.org/10.1016/j.solmat.2014.10.005
  6. Rokhmat, M., Wibowo, E., Sutisna, Khairurrijal & Abdullah, M. Performance improvement of TiO2/CuO solar cell by growing copper particle using fix current electroplating method. Procedia Eng. 170, 72–77 (2017). https://doi.org/10.1016/j.proeng.2017.03.014
  7. Sawicka-Chudy, P. et al. Simulation of TiO2/CuO solar cells with SCAPS-1D software. Mater. Res. Express 6, 085918 (2019). https://doi.org/10.1088/2053-1591/ab22aa
  8. Zhu, L. Development of Metal Oxide Solar Cells through Numerical Modelling. (University of Bolton, Bolton, 2012).
  9. Hussain, S. et al. Fabrication and photovoltaic characteristics of Cu2O/TiO2 thin film heterojunction solar cell. Thin Solid Films 522, 430–434 (2012). https://doi.org/10.1016/j.tsf.2012.08.013
  10. Hussain, S. et al. Cu2O/TiO2 nanoporous thin-film heterojunctions: Fabrication and electrical characterization. Mater. Sci. Semicond. Process. 25, 181–185 (2014). https://doi.org/10.1016/j.mssp.2013.11.018
  11. Sawicka-Chudy, P. et al. Review of the development of copper oxides with titanium dioxide thin film solar cells. AIP Adv. 10, 010701 (2020). https://doi.org/10.1063/1.5125433
  12. Yang, Y., Xu, D., Wu, Q. & Peng, D. Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectro-chemical hydrogen evolution reaction. Sci. Rep. 6, 35158 (2016). https://doi.org/10.1038/srep35158
  13. Ichimura, M. & Kato, Y. Fabrication of TiO2/Cu2O heterojunction solar cells by electrophoretic deposition and electrodeposition. Mater. Sci. Semicond. Process. 16, 1538–1541 (2013). https://doi.org/10.1016/j.mssp.2013.05.004
  14. Zhang, W., Li, Y., Zhu, S. & Wang, F. Influence of argon flow rate on TiO2 photocatalyst film deposited by dc reactive magnetron sputtering. Surf. Coat. Technol. 182, 192–198 (2004). https://doi.org/10.1016/j.surfcoat.2003.08.050
  15. Sawicka-Chudy, P. et al. Characteristics of TiO2, Cu2O, and TiO2/Cu2O thin films for application in PV devices. AIP Adv. 9, 055206 (2019). https://doi.org/10.1063/1.5093037
  16. Sawicka-Chudy, P. et al. Performance improvement of TiO2/CuO by increasing oxygen flow rates and substrate temperature using DC reactive magnetron sputtering method. Optik 206, 164297 (2020). https://doi.org/10.1016/j.ijleo.2020.164297
  17. Li, D. et al. Prototype of a scalable core–shell Cu2O/TiO2 solar cell. Chem. Phys. Lett. 501, 446–450 (2011). http://doi.org/10.1016/j.cplett.2010.11.064
  18. van der Pauw, L. J. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. Philips Res. Rep. 13, 1–9 (1958). https://doi.org/10.1142/9789814503464_0017
  19. ASTM F76-08(2016)e1, Standard Test Methods for Measuring Resistivity and Hall Coefficient and Determining Hall Mobility in, Single-Crystal Semiconductors (ASTM International, West Conshohocken, USA, 2016). https://doi.org/10.1520/F0076-08R16E01
  20. Ziaja, J. Cienkowarstwowe Struktury Metaliczne i Tlenkowe. Właści-wości, Technologia, Zastosowanie w Elektrotechnice (Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2012). [in Polish]
  21. Łowkis, B., Ziaja, J., Klaus P. & Krawczyk D. Effect of magnetron sputtering parameters on dielectric properties of PTFE foil. IEEE Trans. Dielectr. Electr. Insul. 27, 837–841 (2020). https://doi.org/10.1109/TDEI.2020.008710
  22. Gulkowski, S. & Krawczak, E. RF/DC magnetron sputtering deposition of thin layers for solar cell fabrication. Coatings 10, 1–14 (2020). https://doi.org/10.3390/coatings10080791
  23. Zhang, D. K., Liu, Y. C., Liu, Y. L. & Yang, H. The electrical properties and the interfaces of Cu2O/ZnO/ITO p–i–n heterojunction. Physica B 351, 178–183 (2004). https://doi.org/10.1016/j.physb.2004.06.003
  24. Scherrer, P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. in Kolloidchemie Ein Lehrbuch 387–409 (Springer Berlin, Heidelberg, 1912). https://doi.org/10.1007/978-3-662-33915-2_7
  25. Forsyth J.B, Hull S. The effect of hydrostatic pressure on the ambient temperature structure of CuO. J. Phys.: Condens. Matter 35257-5261 (1991). https://doi.org/10.1088/0953-8984/3/28/001
  26. Hanke, L., Fröhlich, D., Ivanov, A., Littlewood, P. B. & Stolz, H. LA Phonoritons in Cu2O. Phys. Rev. Lett. 83, 4365–4368 (1999). https://doi.org/10.1103/PhysRevLett.83.4365
  27. Straumanis, M.  E. & Yu, L. S. Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and Cu-In alpha phase. Acta Cryst. A25, 676–682 (1969). https://doi.org/10.1107/S0567739469001549
  28. Chrzanowska-Giżyńska, J. Cienkie warstwy z borków wolframu osadzane impulsem laserowym i metodą rozpylania magnetronowego –wpływ parametrów procesu na osadzone warstwy. (Instytut Podstawowych Problemów Techniki, Polska Akademia Nauk, Warszawa, 2017). [in Polish]
  29. Wong, T. K., Zhuk, S., Masudy-Panah, S. & Dalapati, G. K. Current status and future prospects of copper oxide heterojunction solar cells. Materials 9, 271 (2016). https://doi.org/10.3390/ma9040271
  30. Gao, X., Du, Y. & Meng, X. Cupric oxide film with a record hole mobility of 48.44 cm2/Vs via direct–current reactive magnetron sputtering for perovskite solar cell application. Sol. Energy 191, 205–209 (2019). https://doi.org/10.1016/j.solener.2019.08.080
  31. Hu, X. et al. Influence of oxygen pressure on the structural and electrical properties of CuO thin films prepared by pulsed laser deposition. Mater. Lett. 176, 282–284 (2016). https://doi.org/10.1016/j.matlet.2016.04.055
Go to article

Authors and Affiliations

Grzegorz Wisz
1
ORCID: ORCID
Paulina Sawicka-Chudy
1
ORCID: ORCID
Maciej Sibiński
2
ORCID: ORCID
Zbigniew Starowicz
3
ORCID: ORCID
Dariusz Płoch
1
ORCID: ORCID
Anna Góral
3
Mariusz Bester
1
ORCID: ORCID
Marian Cholewa
1
Janusz Woźny
4
ORCID: ORCID
Aleksandra Sosna-Głębska
2

  1. Institute of Physics, College of Natural Science, University of Rzeszów, 1 Pigonia St., 35-317 Rzeszów, Poland
  2. Department of Semiconductor and Optoelectronic Devices, Łódź University of Technology, 211/215 Wólczańska St., 90-924 Łódź, Poland
  3. Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Kraków, Poland
  4. Department of Semiconductor and Optoelectronic Devices, Łódź University of Technology, 211/215Wólczańska St., 90-924 Łódź, Poland

This page uses 'cookies'. Learn more