Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this study was to determine the spatial structure of vegetation on the repository of the mine “Fryderyk” in Tarnowskie Góry. Tested area was located in the Upper Silesian Industrial Region (a large industrial region in Poland). It was a unique refuge habitat – Natura2000; PLH240008. The main aspect of this elaboration was to investigate the possible use of geotechniques and generally available geodata for mapping LULC changes and determining the spatial structure of vegetation. The presented study focuses on the analysis of a spatial structure of vegetation in the research area. This exploration was based on aerial images and orthophotomaps from 1947, 1998, 2003, 2009, 2011 and airborne laser scanning data (2011, ISOK project). Forest succession changes which occurred between 1947 and 2011 were analysed. The selected features of vegetation overgrowing spoil heap “Fryderyk” was determined. The results demonstrated a gradual succession of greenery on soil heap. In 1947, 84% of this area was covered by low vegetation. Tree expansion was proceeding in the westerly and northwest direction. In 2011 this canopy layer covered almost 50% of the research area. Parameters such as height of vegetation, crowns length and cover density were calculated by an airborne laser scanning data. These analyses indicated significant diversity in vertical and horizontal structures of vegetation. The study presents some capacities to use airborne laser scanning for an impartial evaluation of the structure of vegetation.
Go to article

Authors and Affiliations

Marta Szostak
Piotr Wężyk
Marek Pająk
Paweł Haryło
Marek Lisańczuk
Download PDF Download RIS Download Bibtex

Abstract

The quarrying industry is changing the local landscape, forming deep open pits and spoil heaps in close proximity to them, especially lignite mines. The impact can include toxic soil material (low pH, heavy metals, oxidations etc.) which is the basis for further reclamation and afforestation. Forests that stand on spoil heaps have very different growth conditions because of the relief (slope, aspect, wind and rainfall shadows, supply of solar energy, etc.) and type of soil that is deposited. Airborne laser scanning (ALS) technology deliver point clouds (XYZ) and derivatives as raster height models (DTM, DSM, nDSM=CHM) which allow the reception of selected 2D and 3D forest parameters (e.g. height, base of the crown, cover, density, volume, biomass, etc). The automation of ALS point cloud processing and integrating the results into GIS helps forest managers to take appropriate decisions on silvicultural treatments in areas with failed plantations (toxic soil, droughts on south-facing slopes; landslides, etc.) or as regular maintenance. The ISOK country-wide project ongoing in Poland will soon deliver ALS point cloud data which can be successfully used for the monitoring and management of many thousands of hectares of destroyed post-industrial areas which according to the law, have to be afforested and transferred back to the State Forest.
Go to article

Authors and Affiliations

Paweł Hawryło
Marta Szostak
Piotr Wężyk
Wojciech Krzaklewski
Marek Pająk
Marcin Pierzchalski
Piotr Szwed
Michał Ratajczak

This page uses 'cookies'. Learn more