Search results

Filters

  • Journals
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Search results

Number of results: 16
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Production of near net shape thin strips using vertical twin roll casting method has been studied. In a typical VTRC process, the simultaneous action of solidification and rolling makes the process quite attractive as well as complicated. An industrially popular alloy A356 has been chosen for the VTRC processing. It is challenging to identify VTRC processing parameters for the alloy to produce thin strips because of its freezing range and complex composition. In the present work processing parameters of VTRC like roll speed, roll gap, melt superheat and the interface convective heat transfer coefficient have been investigated through modelling of the process. The mathematical model was developed which simultaneously solves the heat transfer, fluid flow and solidification, using commercial software COMSOL Multiphysics 5.4. VTRC sheets of alloy A356 were produced in an experimental set up and attempts were made to correlate the microstructures of VTRC A356 alloy to that predicted from the numerical studies to validate the model.

Go to article

Authors and Affiliations

B. Dhindaw
S. Singh
A. Mandal
A. Pandey
Download PDF Download RIS Download Bibtex

Abstract

In present work, two nuclear grade steel (P91, P92) are joined using the arc welding process. The welded joints were subjected to the heat treatment in order to restore the mechanical properties and overcome the heterogeneity across the joints. The weldments were studied for microstructure evolution and mechanical behavior under different condition of heat treatment. The variation in mechanical behavior obtained for the welded joints were tried to relate the microstructural evolution. After the normalizing based heat treatment, homogeneity with negligible δ ferrite across the welded joints was observed.

Go to article

Authors and Affiliations

Sachin Sirohi
Chandan Pandey
Amit Goyal
Download PDF Download RIS Download Bibtex

Abstract

The study aims to examine the role of Self-Forgiveness in shaping the Human Flourishing of the adults. Two hundred fourteen participants (18 to 30 years) comprising 100 males (Mean Age = 22.15(1.61)) and 114 females (Mean Age = 22.00(1.95)) were chosen for the study. Self-forgiveness (Mudgal & Tiwari, 2017a) and Mental Health Continuum-Short Form (Keyes, 2005) were used as the tools. Self-forgiveness comprises Realization & Reparation, Guilt, Attribution and overall self-forgiveness (sum of the first three) while Human Flourishing consists of Hedonic and Eudaimonic (Social plus Psychological) Well-Being. The aggregate of Hedonic and Eudaimonic is overall Human Flourishing. The findings suggested no gender differences in Self-Forgiveness of the participants. Conversely, gender differences were observed in all the dimensions of Human Flourishing in favour of males. Irrespective of gender, Realization & Reparation was positively correlated with Hedonic, Social, Psychological and Eudaimonic Well-Being as well as Human Flourishing except for Guilt and Attribution that showed small positive or negative correlations. Irrespective of gender, Overall Self-Forgiveness correlated positively with all the dimensions of Flourishing. Gender and Realization & Reparation emerged as the significant predictors accounting for significant variance in all the dimensions of Flourishing while Guilt and Attribution did not. The findings suggested that remorse, easy acceptance of wrongdoing, repairing the relationship with self and others, ability to minimize negative emotions towards self, monitoring others’ positive behaviours and acknowledgements of valued and close relationships were the psychological mechanisms that may underlie the predictive strengths of self-forgiveness in regulating flourishing.

Go to article

Authors and Affiliations

Ruchi Pandey
Gyanesh Kumar Tiwari
Priyanka Parihar
Pramod Kumar Rai
Download PDF Download RIS Download Bibtex

Abstract

The influence of ambient solar UV-A or UV-B radiation on growth responses was investigated in three varieties of cotton (Gossypium hirsutum L.) after exclusion of solar UV-A/B radiation: JK-35, IH-63 and Khandwa-2. Cotton plants were grown from seeds in UV-exclusion chambers lined with selective UV filters to exclude either UV-B (280-315 nm) or UV-A/B (280-400 nm) from the solar spectrum under field conditions. Excluding UV-B and UV-A/B significantly increased plant height, leaf area and dry weight accumulation in all three varieties of cotton. The varieties differed considerably in their sensitivity to ambient UV-A/B. Khandwa-2 was most sensitive and JK-35 least sensitive to ambient solar UV. We monitored the activity of the antioxidant enzymes superoxide dismutase (SOD), ascorbic acid peroxidase (APX), glutathione reductase (GR) and guaiacol peroxidase (GPX), as well as the level of the antioxidant ascorbic acid (ASA), in primary leaves of the most UV-sensitive variety (Khandwa-2). The level of UV-B-absorbing substances was significantly decreased by exclusion of solar UV-B and UV-A/B. Exclusion of solar UV decreased the activity of all the antioxidant enzymes monitored and the level of ascorbic acid versus control plants (+UV-A/B) grown under filters transparent to solar UV. Reduction of the antioxidant defense after UV exclusion indicates that ambient solar UV exerts significant stress and induces some reactive oxygen species to accumulate, which in turn retards the growth and development of cotton plants. Ambient solar UV stresses cotton plants, shifting their metabolism towards defense against solar UV. Exclusion of solar UV eliminates the need for that defense and leads to enhancement of primary metabolism.

Go to article

Authors and Affiliations

Sunita Kataria
Priti Dehariya
K.N. Guruprasad
G.P. Pandey
Download PDF Download RIS Download Bibtex

Abstract

Mechanical properties and residual stresses of friction stir welded and autogenous tungsten inert gas welded structural steel butt welds have been studied. Friction stir welding (FSW) of structural steel butt joints has been carried out by in-house prepared tungsten carbide tool with 20 mm/ min welding speed and 931 rpm tool rotation. Tungsten inert gas (TIG) welding of the butt joints was carried out with welding current, arc voltage and the welding speed of 140 amp, 12 V and 90 mm/min respectively. Residual stress measurement in the butt welds has been carried out in weld fusion zone and heat affected zone (HAZ) by using blind hole drilling method. The magnitude of longitudinal residual stress along the weld line of TIG welded joints were observed to be higher than friction stir welded joint. In both TIG and FSW joints, the nature of longitudinal stress in the base metal was observed to be compressive whereas in HAZ was observed to be tensile. It can be stated that butt welds produced with FSW process had residual stress much lower than the autogenous TIG welds.
Go to article

Authors and Affiliations

P.K. Chaurasia
C. Pandey
N. Saini M.M. Mahapatra Giri A.
Download PDF Download RIS Download Bibtex

Abstract

The welding of nuclear grade P91 and P92 steel plate of thickness 5.2 mm were performed using the autogenous tungsten

inert gas (TIG) welding process. The welded joint of P91 and P92 steel plate were subjected to the varying post weld heat-treatment

(PWHT) including the post weld heat treatment (PWHT) and re-austenitizing based tempering (PWNT). A comparative study was

performed related to the microstructure evolution in fusion zone (FZ) of both the welded joint using the scanning electron microscope

and optical microscope in a different condition of heat treatment. The hardness test of the FZ for both joints was also conducted in

a different condition of heat treatment. P92 steel welded joint have observed the higher tendency of the δ ferrite formation that led

to the great variation in hardness of the P92 FZ. The homogeneous microstructure (absence of δ ferrite) and acceptable hardness

was observed after the PWNT treatment for both the welded joint.

Go to article

Authors and Affiliations

C. Pandey
M. Mohan Mahapatra
P. Kumar
P. Prakesh Kumar
J.G. Thakare
Download PDF Download RIS Download Bibtex

Abstract

In the present work, studies have been carried out on the variations in the microstructure and hardness of P91 base-metal and welded joint. This variations result from the grit blasting and thermal cycle experienced during the thermal spraying process. The microstructural effects have been analyzed in terms of the depth of the deformation zone. Scanning Electron Microscopy and Xray diffraction were used as characterization techniques. The grit blasting carried out prior to thermal spraying has resulted in the highest change in sub-surface hardness of the heat affected zone (HAZ). However, flame treatment further reduced the subsurface hardness of the heat affected zone. The depth of deformation zone was highest for inter-critical heat affected zone (IC-HAZ). The overall coating process resulted in an increase in subsurface hardness of various regions of HAZ and fusion zone (FZ). The base metal showed a 7% increase in subsurface hardness due to the overall coating process. The IC-HAZ showed maximum variation with 36% increase in subsurface hardness. The coarse grained heat affected zone (CG-HAZ) and FZ did not show any change in subsurface hardness. As a whole, the hardness and microstructure of the welded joint was observed to be more sensitive to the thermal spray coating process as compared to the base metal.

Go to article

Authors and Affiliations

J.G. Thakare
C. Pandey
R.S. Mulik
M.M. Mahapatra
H.K. Narang

This page uses 'cookies'. Learn more