Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this study, molten salt electrorefining was used to recover indium metal from In-Sn crude metal sourced from indium tin oxide (ITO) scrap. The electrolyte used was a mixture of eutectic LiF-KF salt and InF3 initiator, melted and operated at 700°C. Voltammetric analysis was performed to optimize InF3 content in the electrolyte, and cyclic voltammetry (CV) was used to determine the redox potentials of In metal and the electrolyte. The optimum initiator concentration was 7 wt% of InF3, at which the diffusion coefficients were saturated. The reduction potential was controlled by applying constant current densities of 5, 10, and 15 mA/cm2 using chronopotentiometry (CP) techniques. In metal from the In-Sn crude melt was deposited on the cathode surface and was collected in an alumina crucible.

Go to article

Authors and Affiliations

Hyun-Gyu Lee
Sang-Hoon Choi
Jae-Jin Sim
Jae-Hong Lim
Soong-Keun Hyun
Jong-Hyeon Lee
Kyoung-Tae Park
Download PDF Download RIS Download Bibtex

Abstract

Electron beam melting(EBM) is a useful technique to obtain high-purity metal ingots. It is also used for melting refractory metals such as tantalum, which require melting techniques employing a high-energy heat source. Drawing is a method which is used to convert the ingot into a wire shape. The required thickness of the wire is achieved by drawing the ingot from a drawing die with a hole of similar size. This process is used to achieve high purity tantalum springs, which are an essential component of lithography lamp in semiconductor manufacturing process. Moreover, high-purity tantalum is used in other applications such as sputtering targets for semiconductors. Studies related to recycling of tantalum from these components have not been carried out until now. The recycling of tantalum is vital for environmental and economic reasons. In order to obtain high-purity tantalum ingot, in this study impurities contained in the scrap were removed by electron beam melting after pre-treatment using aqua regia. The purity of the ingot was then analyzed to be more than 4N5 (99.995%). Subsequently, drawing was performed using the rod melted by electron beam melting. Owing to continuous drawing, the diameter of the tantalum wire decreased to 0.5 mm from 9 mm. The hardness and oxygen concentration of the tantalum ingot were 149 Hv and less than 300 ppm, respectively, whereas the hardness of the tantalum wire was 232.12 Hv. In conclusion, 4N5 grade tantalum wire was successfully fabricated from tantalum scrap by EBM and drawing techniques. Furthermore, procedure to successfully recycle Tantalum from scraps was established.

Go to article

Authors and Affiliations

Ji-Won Yu
Sang-Hoon Choi
Jae-Jin Sim
Jae-Hong Lim
Kyoung-Deok Seo
Soong-Keon Hyun
Tae-Youb Kim
Bon-Woo Gu
Kyoung-Tae Park
Download PDF Download RIS Download Bibtex

Abstract

In this study, the effect of the addition of ZrO2 and Al2O3 ceramic powders to Cu-Mo-Cr alloy was studied by examining the physical properties of the composite material. The ceramic additives were selected based on the thermodynamic stability calculation of the Cu-Mo-Cr alloys. Elemental powders, in the ratio Cu:Mo:Cr = 60:30:10 (wt.%), and approximately 0-1.2 wt.% of ZrO2 and Al2O3 were mixed, and a green compact was formed by pressing the mixture under 186 MPa pressure and sintering at 1250°C for 5 h. The raw powders were evenly dispersed in the mixed powder, as observed by scanning electron microscopy. After sintering, the microstructures, densities, electrical conductivities, and hardness of the composites were evaluated. We found that the addition of ZrO2 and Al2O3 increased the hardness and decreased the electrical conductivity and density of the composites.
Go to article

Bibliography

[1] W.P. Li, R.L. Thomas, R.K. Smith, IEEE Trans. Plasma Sci. 29 (5), 744-748 (2001).
[2] X. Wei, J. Wang, Z. Yang, Z. Sun, D. Yu, X. Song, B. Ding, S. Yang, J. Alloys Compd. 509, 7116-7120 (2011).
[3] H . Fink, D. Gentsch, M. Heimbach, IEEE Trans. Plasma Sci. 31, 973-976 (2003).
[4] K. Maiti, M. Zinzuwadia, J. Nemade, J. Adv. Mat. Res. 585, 250- 254 (2012).
[5] C. Zhang, Z. Yang, Y. Wang, J. Mater. Process. Technol. 178, 283-286 (2006).
[6] C. Aguilar, D. Guzman, F. Castro, V. Martínez, F. de Las Cuevas, S. Lascano, T. Muthiah, Mater. Chem. Phys. 146, 493- 502 (2014).
[7] M . Venkatraman, J.P. Neumann, Bull. Alloy Phase Diagr. 8, 216- 220 (1987).
[8] X. Yang, S. Liang, X. Wang, P. Xiao, Z. Fan, Int. J. Refract. Met. 28, 305-311 (2010).
[9] S. Bera, I. Manna, Mater. Chem. Phys. 132, 109-118 (2012).
[10] A. Kumar, S.K. Pradhan, K. Jayasankar, M. Debata, R.K. Sharma, A. Mandal, J. Electron. Mater. 46, 1339-1347 (2017).
[11] D . Shen, Y. Zhu, W. Tong, An investigation on morphology and structure of Cu-Cr-Al2O3 powders prepared by mechanical milling, in: M. Wang, X. Zhou (Eds.), Proceedings of the 5th International Conference on Mechatronics, Materials, Chemistry and Computer Engineering, Atlantis Press (2017).
[12] C. Cui, Y. Gao, S. Wei, High Temp. Mater. Proc. 36, 163- 166 (2016). DOI: https://doi.org/10.1515/htmp-2015-0180
[13] S. Bera, W. Lojkowsky, I. Manna, Metall. Mater. Trans. A. 40, 3276 (2009). DOI: https://doi.org/10.1007/s11661-009-0019-7
[14] J. Zygmuntowicz, A. Łukasiak, P. Piotrkiewicz, W. Kaszuwara, Compos. Theory Pract. 19, 43-49 (2019).
[15] S.D. Salman, Z.B. Lemon, Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites. 249-263 (2018). DOI : https://doi.org/10.1016/B978-0-08-102160-6.00013-5
[16] M . Elmahdy, G. Abouelmagd, A.A. Elnaeem Mazen, J. Mat. Res. 21, 1 (2018).
[17] M . Wang, N. Pan. J. Mater. Sci. Eng. R Rep. 63, 1-30 (2008).
[18] J. Kovác̆ik, Scripta Mater. 39, 153-157 (1998). DOI : https://doi.org/10.1016/S1359-6462(98)00147-X
[19] M. Orolinova, J. Ďurišin, K. Ďurišinová, Z. Danková, M. Besterci, Kovove Mater. 53, 409-414 (2015). DOI : https://doi.org/10.4149/km_2015_6_409
[20] Z.-Q. Wang, Y.-B. Zhong, X.-J. Rao, C. Wang, J. Wang, Z.- G. Zhang, W.-L. Ren, Z-M. Ren, Trans. Nonferrous Met. Soc. China 22, 1106-1111 (2012).
[21] J. Zygmuntowicz, J. Los, B. Kurowski, P. Piotrkiewicz, W. Kaszuwara, Adv. Compos. Hybrid Mater. 1-11 (2020). DOI : https://doi.org/10.1007/s42114-020-00188-8
Go to article

Authors and Affiliations

Yeong-Woo Cho
1 2
ORCID: ORCID
Jae-Jin Sim
1 2
ORCID: ORCID
Sung-Gue Heo
1 3
ORCID: ORCID
Hyun-Chul Kim
1 3
Yong-Kwan Lee
1 2
ORCID: ORCID
Jong-Soo Byeon
1 2
ORCID: ORCID
Yong-Tak Lee
1 2
ORCID: ORCID
Kee-Ahn Lee
2
ORCID: ORCID
Seok-Jun Seo
1
ORCID: ORCID
Kyoung-Tae Park
1
ORCID: ORCID

  1. Korea Institute for Rare Metals, Korea Institute of Industrial Technology, 7-50 Songdo-dong Yeonsoo-gu, Incheon 21999, Korea
  2. Inha University, Department of Advanced Materials Engineering, Incheon 22212, Korea
  3. Korea University, Department of Materials Science and Engineering, Seoul 02841, Korea
Download PDF Download RIS Download Bibtex

Abstract

In this study, high-purity tantalum metal powder was manufactured via self-propagating high-temperature synthesis. During the process, Ta2O5 and Mg were used as the raw material powder and the reducing agent, respectively, and given that combustion rate and reaction temperature are important factors that influence the success of this process, these factors were controlled by adding an excessive mass of the reducing agent (Mg) i.e., above the chemical equivalent, rather than by using a separate diluent. It was confirmed that Ta metal powder manufactured after the process was ultimately manufactured 99.98% high purity Ta metal powder with 0.5 µm particle size. Thus, it was observed that adding the reducing reagent in excess favored the manufacture of high-purity Ta powder that can be applied in capacitors.
Go to article

Bibliography

[1] S.M. Hwang, J.P. Wang, D.W. Lee, J. Met. 9, 205 (2019).
[2] H .I. Won, H.H. Nersisyan, C.W. Won, J. Alloys Compd. 478, 716-720 (2009)
[3] H .H. Nersisyan, H.S. Ryu, J.H. Lee, H.Y. Suh, H.I. Won, Combust. Flame 219, 136-146 (2020).
[4] T. Iuchi, K.S. Ono, Repts Res-Instt. Toboko Uni., Ser. A13, 456 (1961).
[5] B. Yuan, H. Okabe, J. Alloys Compd. 443, 71-82 (2007).
[6] H . Okabe, N. Sato, Y. Mitsuda, S. Ono, Mater. Trans. 44, 2646- 2653 (2003).
[7] H . Okabe, S. Iwata, M. Imagunbai, Y. Mitsuda, M. Maeda, ISIJ Int. 44, 285-293 (2004).
[8] S.Y. Lee, S.I. Lee, C.W. Won, J. Kor. Inst. Met. & Mater. 47, 338- 343 (2009).
[9] J.J. Sim, S.H. Choi, J.H. Park, I.K. Park, J.H. Lim, K.T. Park, J. Powder Metall. Inst. 25, 251-256 (2018).
[10] A.P. Hardt, P.V. Phung, Combustion. Flame 21, 77 (1973).
[11] A.P. Hardt, R.W. Holsinger, Combustion. Flame 21, 91 (1973).
[12] A.G. Merzhanov, I.P. Borovinskaya, Dokl. Akad. Nauk. SSSR (Chem.) 204, 429 (1972).
[13] V .M. Orlov, M.V. Kryzhanov, Metally, 2010, 384-388, (2009).
[14] H SC Chemistry Software ver. 8.0, Outotec. 2014. Available online: https://www.outotec.com (accessed on 20 November 2018).
[15] S.H. Choi, J.J. Sim, J.H. Lim, S.J. Seo, D.W. Kim, S.K. Hyun, K.T. Park, J. Met. 9, 169 (2019).
[16] H .H. Nersisyan, J.H. Lee, S.I. Lee, C.W. Won, Combustion. Flame 135, 539-545 (2003).
[17] J.S. Yoon, S.H. Hwang, B.I. Kim, J. Kor. Inst. Surf. Eng. 42, 227- 231 (2009).
[18] S. Luidold, R. Ressel, Proceedings of EMC 1, 1-15 (2009).
[19] T. Hawa, M.R. Zachaeiah, J. Aerosol Sci. 37, 1-15 (2006).
[20] Y. Tian, W. Jiao, P. Liu, S. Song, Z. Lu, A. Hirata, M. Chen, Nat. Commun. 10, 5249 (2019).
[21] V .B. Storozhev, J. Aerosol Sci. 34, 179-185 (2001).
Go to article

Authors and Affiliations

Yong-Kwan Lee
1 2
ORCID: ORCID
Jae-Jin Sim
1 2
ORCID: ORCID
Jong-Soo Byeon
1 2
ORCID: ORCID
Yong-Tak Lee
1 2
ORCID: ORCID
Yeong-Woo Cho
1 2
ORCID: ORCID
Hyun-Chul Kim
1 3
Sung-Gue Heo
1 3
ORCID: ORCID
Kee-Ahn Lee
2
ORCID: ORCID
Seok-Jun Seo
1
ORCID: ORCID
Kyoung-Tae Park
1
ORCID: ORCID

  1. Korea Institute for Rare Metals, Korea Institute of Industrial Technology, 7-50 Songdo-dong Yeonsoo-gu, Incheon 21999, Korea
  2. Inha University, Department of Advanced Materials Engineering, Incheon 22212, Korea
  3. Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, Republic of Korea

This page uses 'cookies'. Learn more