Wyniki wyszukiwania

Filtruj wyniki

  • Czasopisma
  • Data

Wyniki wyszukiwania

Wyników: 2
Wyników na stronie: 25 50 75
Sortuj wg:
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Cyclosporine is an immunosuppressive drug that is used to prevent tissue rejection in organ transplants and to treat autoimmune diseases such as psoriasis and rheumatoid arthritis. It has important toxic effects in many organs such as the liver and kidney. The aim of this study was to determine and compare the effectiveness of the single and combined treatment of dipyridamole, which is a vasodilator and has an antioxidant effect, ketotifen which is toll-like receptor-4 inhibitory and has an antioxidant effect, quercetin which is an antioxidant and has an anti-inflammatory effect in cyclosporine-induced hepatorenal toxicity. Forty-eight Wistar Albino rats were divided into 7 groups. The research period was 21 days. The cyclosporine increased serum ALT and AST levels, in contrast to their increased levels prevented by all the treatments. The serum creatinine level decreased significantly with ketotifen and combined treatment, while cyclosporine partially increased serum creatinine and urea levels. The urine microalbumin and protein levels were increased significantly by cyclosporine, whereas they decreased with dipyridamole treatment. The protein levels decreased by quercetin and combined treatments. The kidney injury molecule- 1 and retinol-binding protein levels were increased by the cyclosporine, while ketotifen treatment partially decreased them. In conclusion, ketotifen and dipyridamole can prevent cyclosporine- induced hepatorenal toxicity and quercetin can increase the effectiveness of this treatment.
Przejdź do artykułu

Bibliografia

1. Abdel-Raheem IT, Abdel-Ghany AA, Mohamed GA (2009) Protective effect of quercetin against gentamicin-induced nephrotoxicity in rats. Bio Pharm Bull 32: 61-67.
2. Abdelzaher WY, AboBakr Ali AH, El-Tahawy NF (2020) Mast cell stabilizer modulates Sirt1/Nrf2/TNF pathway and inhibits oxidative stress, inflammation, and apoptosis in rat model of cyclophosphamide hepatotoxicity. Immunopharmacol Immunotoxicol 42: 101-109.
3. Aizawa T, Suzuki S, Asawa T, Komatsu M, Shigematsu S, Okada N, Katakura M, Hiramatsu K, Shinoda T, Hashizume K (1990) Di-pyridamole reduces urinary albumin excretion in diabetic patients with normo- or microalbuminuria. Clin Nephrolp 33: 130-135.
4. Amudha G, Josephine A, Varalakshmi P (2006) Role of lipoic acid in reducing the oxidative stress induced by cyclosporine A. Clin Chim Acta 372: 134-139.
5. Andreucci M, Faga T, Pisani A, Perticone M, Michael A (2017) The ischemic/nephrotoxic acute kidney injury and the use of renal bi-omarkers in clinical practice. Eur J Inter Med 39: 1-8.
6. Aydın B (2011) Quercetin prevents methotrexate-induced hepatotoxicity without interfering methotrexate metabolizing enzymes in liver of mice. J Appl Biol Sci 5: 75-80.
7. Balah A, Ezzat O, Akool ES (2018) Vitamin E inhibits cyclosporin A-induced CTGF and TIMP-1 expression by repressing ROS-mediated activation of TGF-beta/Smad signaling pathway in rat liver. Int Immunopharmacol 65: 493-502.
8. Balakumar P, WitnessKoe WE, Gan YS, JemayPuah SM, Kuganesswari S, Prajapati SK, Varatharajan R, Jayachristy SA, Sundram K, Bahari MB (2017) Effects of pre and post-treatments with dipyridamole in gentamicin-induced acute nephrotoxicity in the rat. Regul Toxicol Pharmacol 84: 35-44.
9. Behling EB, Sendao MC, Francescato HD, Antunes LM, Costa RS, Bianchi Mde L (2006) Comparative study of multiple dosage of quercetin against cisplatin-induced nephrotoxicity and oxidative stress in rat kidneys. Pharmacol Rep 58: 526-532.
10. Burdmann EA, Andoh TF, Yu L, Bennett WM (2003) Cyclosporine nephrotoxicity. Semin Nephrol 23: 465-476.
11. Carlos CP, Sonehara NM, Oliani SM, Burdmann EA (2014) Predictive usefulness of urinary biomarkers for the identification of cyclo-sporine A-induced nephrotoxicity in a rat model. PLoS One 9: e103660.
12. Chakrabarti S, Vitseva O, Iyu D, Varghese S, Freedman JE (2005) The effect of dipyridamole on vascular cell-derived reactive oxygen species. J Pharmacol Exp Ther 315: 494-500.
13. Chinen R, Camara NO, Nishida S, Silva MS, Rodrigues DA, Pereira AB, Pacheco-Silva A (2006) Determination of renal function in long-term heart transplant patients by measurement of urinary retinol-binding protein levels. Brazil J Med Biol Res 39: 1305-1313.
14. Daoudaki M, Fouzas I, Stapf V, Ekmekcioglu C, Imvrios G, Andoniadis A, Demetriadou A, Thalhammer T (2003) Cyclosporine a augments P-glycoprotein expression in the regenerating rat liver. Biol Pharm Bull 26: 303-307.
15. El-Bassossy HM, Eid BG (2018) Cyclosporine A exhibits gender-specific nephrotoxicity in rats: Effect on renal tissue inflammation. Biochem Biophys Res Commun 495: 468-472.
16. El-Shafey MM, Abd-Allah GM, Mohamadin AM, Harisa GI, Mariee AD (2015) Quercetin protects against acetaminophen-induced hepatorenal toxicity by reducing reactive oxygen and nitrogen species. Pathophysiology 22: 49-55.
17. Hagar HH (2004) The protective effect of taurine against cyclosporine A-induced oxidative stress and hepatotoxicity in rats. Toxicol Lett 151: 335-343.
18. Hutchinson MR, Loram LC, Zhang Y, Shridhar M, Rezvani N, Berkelhammer D, Phipps S, Foster PS, Landgraf K, Falke JJ, Rice KJ, Maier SF, Yin H, Watkins LR (2010) Evidence that tricyclic small molecules may possess toll-like receptor and myeloid differentiation protein 2 activity. Neuroscience 168: 551-563.
19. Josephine A, Amudha G, Veena CK, Preetha SP, Varalakshmi P (2007) Oxidative and nitrosative stress mediated renal cellular damage induced by cyclosporine A: role of sulphated polysaccharides. Biol Pharm Bull 30: 1254-1259.
20. Kaur T, Kaur A, Singh M, Buttar HS, Pathak D, Singh AP (2016) Mast cell stabilizers obviate high fat diet-induced renal dysfunction in rats. Eur J Pharmacol 777: 96-103.
21. Khattab HA, Abounasef SK, Bakheet HL (2019) The biological and hematological effects of Echinacea purpurea L. roots extract in the immunocompromised rats with cyclosporine. J Microsc Ultrastruct 7: 65-71.
22. Lei DM, Piao SG, Jin YS, Jin H, Cui ZH, Jin HF, Jin JZ, Zheng HL, Li JJ, Jiang YJ, Yang CW , Li C (2014) Expression of erythropoi-etin and its receptor in kidneys from normal and cyclosporine-treated rats. Transplant Proc 46: 521-528.
23. Lesjak M, Beara I, Simin N, Pintać D, Majkić T, Bekvalac K, Orčić D, Mimica-Dukić N (2018) Antioxidant and antiinflammatory activi-ties of quercetin and its derivatives. J Funct Food 40: 68-75.
24. Lloberas N, Torras J, Alperovich G, Cruzado JM, Gimenez-Bonafe P, Herrero-Fresneda I, Franquesa LM, Rama I, Grinyo JM (2008) Different renal toxicity profiles in the association of cyclosporine and tacrolimus with sirolimus in rats. Nephrol Dial Transplant 23: 3111-3119.
25. Marchewka Z, Kuźniar J, Długosz A, Krasnowski R, Zynek-Litwin M, Stokłosa A, Klinger M (2007) Limitations of cyclosporine tox-icity assessment in early stage after renal transplantation. Acta Toxicol 15: 17-24.
26. Mokbel S (2000) Effects of dipyridamole and nifedipine on experimentally-induced hepatotoxicity by carbon-tetrachloride in rats. Mansoura Med J 29: 43-53.
27. Morales AI, Vicente-Sanchez C, Santiago Sandoval JM, Egido J, Mayoral P, Arévalo MA, Fernández-Tagarro M, López-Novoa JM, Pérez-Barriocanal F (2006) Protective effect of quercetin on experimental chronic cadmium nephrotoxicity in rats is based on its antioxi-dant properties. Food Chem Toxicol 44: 2092-2100.
28. Mostafavi-Pour Z, Zal F, Monabati A, Vessal M (2008) Protective effects of a combination of quercetin and vitamin E against cyclo-sporine A-induced oxidative stress and hepatotoxicity in rats. Hepatol Res 38: 385-392.
29. Palomero J, Galan AI, Munoz ME, Tunon MJ, Gonzalez-Gallego J, Jimenez R (2001) Effects of aging on the susceptibility to the toxic effects of cyclosporin A in rats. Changes in liver glutathione and antioxidant enzymes. Free Radic Biol Med 30: 836-845.
30. Perez-Rojas J, Blanco JA, Cruz C, Trujillo J, Vaidya VS, Uribe N, Bonventre JV, Gamba G, Bobadilla NA (2007) Mineralocorticoid receptor blockade confers renoprotection in preexisting chronic cyclosporine nephrotoxicity. Am J Physiol Renal Physiol, 292: F131-139.
31. Refaie M, Ibrahim S, Sadek SA, Abdelrahman A (2017) Role of ketotifen in methotrexate-induced nephrotoxicity in rats. Egypt J Basic Clin Pharmacol 7: 70-80.
32. Sereno J, Vala H, Nunes S, Rocha-Pereira P, Carvalho E, Alves R, Teixeira F, Reis F (2015). Cyclosporine A-induced nephrotoxicity is ameliorated by dose reduction and conversion to sirolimus in the rat. J Physiol Pharmacol 66: 285-299.
33. Seven I, Baykalır BG, Seven PT, Dagoglu G (2014) The ameliorative effects of propolis against cyclosporine A induced hepatotoxicity and nephrotoxicity in rats. Kafkas Univ Vet Fak Derg 20: 641-648.
34. Vangaveti S, Das P, Kumar VL (2021) Metformin and silymarin afford protection in cyclosporine A induced hepatorenal toxicity in rat by modulating redox status and inflammation. J Biochem Molecular Toxicol 35: e22614.
35. Wei Y, Luo Z, Zhou K, Wu Q, Xiao W, Yu Y, Li T (2021) Schisandrae chinensis fructus extract protects against hepatorenal toxicity and changes metabolic ions in cyclosporine A rats. Nat Prod Res 35: 2915-2920.
36. Weyrich AS, Denis MM, Kuhlmann-Eyre JR, Spencer ED, Dixon DA, Marathe GK, McIntyre TM, Zimmerman GA, Prescott SM (2005) Dipyridamole selectively inhibits inflammatory gene expression in platelet-monocyte aggregates. Circulation 111: 633-642.
37. Wu Q, Wang X, Nepovimova E, Wang Y, Yang H, Kuca K (2018) Mechanism of cyclosporine A nephrotoxicity: Oxidative stress, au-tophagy, and signalings. Food Chem Toxicol 118: 889-907.
38. Yuksel Y, Yuksel R, Yagmurca M, Haltas H, Erdamar H, Toktas M, Ozcan O (2017) Effects of quercetin on methotrexate-induced ne-phrotoxicity in rats. Hum Exp Toxicol 36: 51-61.

Przejdź do artykułu

Autorzy i Afiliacje

B. Dik
1
T.M. Parlak
1
O. Tufan
1
F.B. Ozgur
2
A. Er
1

  1. Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Selcuk University, Ardicli Neighborhood, 42130, Konya, Turkey
  2. Harran University, Birecik Vocational School, Laboratory and Veterinary Health Program, Karsiyaka Neighborhood, Prof. Dr. İbrahim Halil MUTLU Avenue, 63400, Sanliurfa, Turkey
Pobierz PDF Pobierz RIS Pobierz Bibtex

Abstrakt

Racecadotril, used as an antidiarrheal drug in humans and some animals such as the dog, inhibits peripheral enkephalinase, which degrades enkephalins and enkephalinase inhibition induces a selective increase in chloride absorption from the intestines. The study material consisted of 46 calves with infectious diarrhea and 14 healthy calves in the age 2-20 days. The calves were divided into eight groups; healthy calves (HG), healthy calves administered racecadotril (HRG), calves with E.coli-associated diarrhea (ECG), calves with E.coli-associated diarrhea administered racecadotril (ECRG), calves with bovine Rotavirus/Coronavirus-associated diarrhea (VG), calves with bovine Rotavirus/Coronavirus-associated diarrhea administered racecadotril (VRG), calves with C. parvum-associated diarrhea (CG) and calves with C. parvum-associated diarrhea administered racecadotril (CRG). Calves in the racecadotril groups received oral racecadotril at a dose of 2.5 mg/kg twice a day for 3 days. A routine clinical examination of all calves was performed. Hemogram and blood gas measurements were made from the blood samples. Standard diarrhea treatment was applied to the HG, ECG, CG, and VG groups. Clinical score parameters such as appetite, feces quality, dehydration, standing and death and some blood gas and hemogram parameters were evaluated to determine the clinical efficacy of racecadotril. Clinical score parameters were determined observationally. Blood gas measurements were performed using a blood gas analyzer. The hemogram was performed using an automated hematologic analyzer. Statistically significant differences were determined in the blood pH, bicarbonate, base deficit, lactate, and total leukocyte count in calves with diarrhea compared to healthy calves. After the treatments, these parameters were found to be within normal limits. At the end of treatment, 42 of the 46 diarrheal calves recovered, while 4 died. We found that racecadotril was effective in improving both clinical recovery and feces consistency in neonatal calves with diarrhea caused by E. coli. As a result, it can be stated that racecadotril, which has an antisecretory effect, is beneficial in the treatment of bacterial diarrhea caused by such as E. coli.
Przejdź do artykułu

Bibliografia

1. Al Mawly J, Grinberg A, Prattley D, Moffat J, Marshall J, French N (2015) Risk factors for neonatal calf diarrhoea and enteropathogen shedding in New Zealand dairy farms. Vet J 203: 155-160.
2. Amaral-Phillips DM, Scharko PB, Johns JT, Franklin S (2006) Feeding and managing baby calves from birth to 3 months of age. Univ Kentucky Coop Ext Serv 1-6.
3. Aydogdu U, Yildiz R, Guzelbektes H, Naseri A, Akyuz E, Sen I (2018) Effect of combinations of intravenous small-volume hypertonic sodium chloride, acetate Ringer, sodium bicarbonate, and lactate Ringer solutions along with oral fluid on the treatment of calf diarrhea. Pol J Vet Sci 21: 273-280.
4. Berchtold J (2009) Treatment of calf diarrhea: intravenous fluid therapy. Vet Clin North Am Food Anim Pract 25: 73-99.
5. Bergmann JF, Chaussade S, Couturier D, Baumer P, Schwartz JC, Lecomte JM (1992) Effects of acetorphan, an antidiarrhoeal enkephalinase inhibitor, on oro‐caecal and colonic transit times in healthy volunteers. Aliment Pharmacol Ther 6: 305-313
6. Björkman C, Svensson C, Christensson B, De Verdier K (2003) Cryptosporidium parvum and Giardia intestinalis in calf diarrhoea in Sweden. Acta Vet Scand 44: 145-152.
7. Boranbayeva T, Karahan AG, Tulemissova Z, Myktybayeva R, Özkaya S (2020) Properties of a new probiotic candidate and lactobacte-rin-TK2 against diarrhea in calves. Probiotics Antimicrob 12: 918-928.
8. Constable PD (2009) Treatment of calf diarrhea: Antimicrobial and ancillary treatments. Vet Clin North Am Food Anim Pract 25: 101-120.
9. Constable PD, Hinchcliff KW, Done SH, Grünberg, W (2016) Veterinary medicine: a textbook of the diseases of cattle, horses, sheep, pigs and goats. 11 th ed., Elsevier Health Sciences, St. Louis, pp:113-137.
10. Coskun A, Sen I, Guzelbektes H, Ok M, Turgut K, Canikli S (2010) Comparison of the effects of intravenous administration of isotonic and hypertonic sodium bicarbonate solutions on venous acid-base status in dehydrated calves with strong ion acidosis. J Am Vet Med 236: 1098-1103.
11. CVMP (2020) List of nationally authorised medicinal products Active substance: racecadotril. EMA/646224/2020.https://www.ema.europa.eu/en/documents/psusa/racecadotrillist-nationally-authorised-medicinal-products-psusa/ 00002602/202003_en.pdf
12. Duval‐Iflah Y, Berard, H, Baumer P, Guillaume P, Raibaud P, Joulin Y, Lecomte JM (1999) Effects of racecadotril and loperamide on bacterial proliferation and on the central nervous system of the newborn gnotobiotic piglet. Aliment Pharmacol Ther 6: 9-14.
13. Eberlin M, Mück T, Michel MC (2012) A comprehensive review of the pharmacodynamics, pharmacokinetics, and clinical effects of the neutral endopeptidase inhibitor racecadotril. Front Pharmacol 3: 93
14. Field M (2003) Intestinal ion transport and the pathophysiology of diarrhea. J Clin Invest 111: 931-943.
15. Fischbach W, Andresen V, Eberlin M, Mueck T, Layer P (2016) A comprehensive comparison of the efficacy and tolerability of racecadotril with other treatments of acute diarrhea in adults. Front Med (Lausanne) 14: 44.
16. Gibbons JF, Boland F, Buckley JF, Butler F, Egan J, Fanning S, Markey BK, Leonard FC (2014) Patterns of antimicrobioal resistance in pathogenic Escherichia coli isolates from cases of calf enteritis during the spring-calves season. Vet Microbiol 170: 73-80.
17. Hinterleitner TA, Petritsch W, Dimsity G, Berard H, Lecomte JM, Krejs GJ (1997) Acetorphan prevents cholera-toxin-induced water and electrolyte secretion in the human jejunum. Eur J Gastroenterol Hepatol 9: 887-891.
18. Hodges K, Gill R (2010) Infectious diarrhea: cellular and molecular mechanisms. Gut Microbes 1: 4-21.
19. Katsoulos PD, Karatzia MA, Dovas CI, Filioussis G, Papadopoulos E, Kiossis E, Arsenopoulos K, Papadopoulos T, Boscos C, Karatzias H (2017) Evaluation of the In-Field Efficacy of Oregano Essential Oil Administration on the Control of Neonatal Diarrhea Syndrome in Calves. Res Vet Sci 115: 478–483.
20. Kumar B, Shekhar P, Kumar N (2010) A clinical study on neonatal calf diarrhoea. Intas Polivet 11: 233-235.
21. Lecomte JM (2000) An overview of clinical studies with racecadotril in adults. Int J Antimicrob Agents 14: 81-87.
22. Malik YS, Kumar N, Sharma K, Sharma R, Kumar HB, Anupamlal K, Kumari S, Shukla S, Chandrahekar KM (2013) Epidemiology and genetic diversity of rotavirus strains associated with acute gastroenteritis in bovine, porcine, poultry and human population of Madhya Pradesh, Central India, 2004–2008. Adv Anim Vet Sci 1: 111-115.
23. Matheson AJ, Noble S (2000) Racecadotril. Drugs 59: 829-835.
24. McGuirk SM (2008) Disease management of dairy calves and heifers. Vet Clin North Am Food Anim Pract 24: 139-153.
25. Megeed KN, Hammam AM, Morsy GH, Khalil FA, Seliem MM, Aboelsoued D (2015) Control of cryptosporidiosis in buffalo calves using garlic (Allium sativum) and nitazoxanide with special reference to some biochemical parameters. Glob Vet 14: 646-655.
26. Muheet AT, Ashraf I, Chhibber S, Soodan JS, Singh R, Muhee A, Nazim K, Majeed A (2018) The use of racecadotril as an effective adjunct therapeutic measure in the management of diarrhea. Pharma innov 7: 610-612.
27. Naylor JM (2009) Neonatal Calf Diarrhea. Food Anim Pract 2009 : 70-77.
28. Ok M, Guler L, Turgut K, Ok U, Sen I, Gunduz IK, Birdane MF, Güzelbektes H (2009) The studies on the aetiology of diarrhoea in neonatal calves and determination of virulence gene markers of Escherichia coli strains by multiplex PCR. Zoonoses Public Health 56: 94-101.
29. Ok M, Sevinc F, Ider M, Ceylan O, Erturk A, Ceylan C, Durgut, MK (2021) Evaluation of clinical efficacy of gamithromycin in the treatment of naturally infected neonatal calves with cryptosporidiosis. Eurasian J Vet Sci 37: 49-54.
30. Ok M, Yildiz R, Hatipoglu F, Baspinar N, Ider M, Üney K, Ertürk A, Durgut MK, Terzi F (2020) Use of intestine-related biomarkers for detecting intestinal epithelial damage in neonatal calves with diarrhea. Am J Vet Res 81: 139-146.
31. Primi MP, Bueno L, Baumer P, Berard H, Lecomte JM (1999) Racecadotril demonstrates intestinal antisecretory activity in vivo. Aliment Pharmacol Ther 6: 3-7.
32. Rachmilewitz D, Karmeli F, Chorev M, Selinger Z (1983) Effect of opiates on human colonic adenylate cyclase activity. Eur J Pharmacol 93: 169-173.
33. Renaud DL, Buss L, Wilms JN, Steele MA (2020) Technical note: Is fecal consistency scoring an accurate measure of fecal dry matter in dairy calves? J Dairy Sci 103: 10709-10714.
34. Renaud DL, Kelton DF, Weese JS, Noble C, Duffield TF (2019) Evaluation of a Multispecies Probiotic as a Supportive Treatment for Diarrhea in Dairy Calves: A Randomized Clinical Trial. J Dairy Sci 102: 4498-4505.
35. Schwartz JC (2000) Racecadotril: a new approach to the treatment of diarrhoea. Int J Antimicrob Agents 14: 75-79.
36. Sen I, Altunok V, Ok M, Coskun A, Constable PD (2009) Efficacy of oral rehydration therapy solutions containing sodium bicarbonate or sodium acetate for treatment of calves with naturally acquired diarrhea, moderate dehydration, and strong ion acidosis. J Am Vet Med Assoc 234: 926-934.
37. Sen I, Guzelbektes H, Yildiz R (2013) Neonatal Calf Diarrhea: Pathophysiology, Epidemiology, Clinic, Treatment and Prevention. Turkiye Klinikleri J Vet Sci 4: 71-8.
38. Singh N, Narayan S (2008) Racecadotril: A novel antidiarrheal. Med J. Armed Forces India 64: 361-362.
39. Smith GW, Berchtold J (2014) Fluid therapy in calves. Vet Clin North Am Food Anim Pract 30: 409-427.
40. Trefz FM, Constable PD, Lorenz I (2015) Quantitative physicochemical analysis of acid‐base balance and clinical utility of anion gap and strong ion gap in 806 neonatal calves with diarrhea. J Vet Intern Med 29: 678-687.
41. Trefz FM, Lorenz I, Lorch A, Constable PD (2017) Clinical signs, profound acidemia, hypoglycemia, and hypernatremia are predictive of mortality in 1,400 critically ill neonatal calves with diarrhea. PLoS One 12: e0182938.
42. Tsukano K, Kato S, Sarashina S, Abe I, Ajito T, Ohtsuka H, Suzuki K (2017) Effect of acetate Ringer’s solution with or without 5% dextrose administered intravenously to diarrheic calves. J Vet Med Sci 79: 795-800.
43. Tsunemitsu H, Smith DR, Saif LJ (1999) Experimental inoculation of adult dairy cows with bovine coronavirus and detection of coronavirus in feces by RT-PCR. Arch Virol 144: 167-175.
44. Turgut K, Ok M (1997) Veteriner Gastroenteroloji. 1st ed., Bahcıvanlar Basımevi, Konya, pp 362-383.
45. Urie NJ, Lombard JE, Shivley CB, Kopral CA, Adams AE, Earleywine TJ, Olson JD, Garry FB (2018) Preweaned Heifer Management on US Dairy Operations: Part V. Factors Associated with Morbidity and Mortality in Preweaned Dairy Heifer Calves. J Dairy Sci 101: 9229-9244.
46. WHO (2007) World Health Organization. Proposal for the inclusion of racecadotril in the WHO model list of essential medicines. WHO Essential medicines list for children: Racecadotril. Paris, France, p 23.
Przejdź do artykułu

Autorzy i Afiliacje

B. Tras
1
M. Ok
2
M. Ider
2
T.M. Parlak
1
R. Yildiz
3
H. Eser Faki
1
Z. Ozdemir Kutahya
4
K. Uney
1

  1. Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, Ardicli Neighborhood, 42100, Konya, Turkey
  2. Department of Internal Medicine, Faculty of Veterinary Medicine, University of Selcuk, Ardicli Neighborhood, 42100, Konya, Turkey
  3. Department of Internal Medicine, Faculty of Veterinary Medicine, University of Mehmet Akif Ersoy, Yakakoy, 15030, Burdur, Turkey
  4. Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Cukurova, Fatih Sultan Mehmet Avenue, 01930, Adana, Turkey

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji