Search results

Filters

  • Journals
  • Autorzy
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The quality of the squeeze castings is significantly affected by secondary dendrite arm spacing, which is influenced by squeeze cast input

parameters. The relationships of secondary dendrite arm spacing with the input parameters, namely time delay, pressure duration, squeeze

pressure, pouring and die temperatures are complex in nature. The present research work focuses on the development of input-output

relationships using fuzzy logic approach. In fuzzy logic approach, squeeze cast process variables are expressed as a function of input

parameters and secondary dendrite arm spacing is expressed as an output parameter. It is important to note that two fuzzy logic based

approaches have been developed for the said problem. The first approach deals with the manually constructed mamdani based fuzzy

system and the second approach deals with automatic evolution of the Takagi and Sugeno’s fuzzy system. It is important to note that the

performance of the developed models is tested for both linear and non-linear type membership functions. In addition the developed models

were compared with the ten test cases which are different from those of training data. The developed fuzzy systems eliminates the need of

a number of trials in selection of most influential squeeze cast process parameters. This will reduce time and cost of trial experimentations.

The results showed that, all the developed models can be effectively used for making prediction. Further, the present research work will

help foundrymen to select parameters in squeeze casting to obtain the desired quality casting without much of time and resource

consuming.

Go to article

Authors and Affiliations

M.G.C. Patel
P. Krishna
M.B. Parappagoudar
Download PDF Download RIS Download Bibtex

Abstract

Chemical bonded resin sand mould system has high dimensional accuracy, surface finish and sand mould properties compared to green

sand mould system. The mould cavity prepared under chemical bonded sand mould system must produce sufficient permeability and

hardness to withstand sand drop while pouring molten metal through ladle. The demand for improved values of permeability and mould

hardness depends on systematic study and analysis of influencing variables namely grain fineness number, setting time, percent of resin

and hardener. Try-error experiment methods and analysis were considered impractical in actual foundry practice due to the associated cost.

Experimental matrices of central composite design allow conducting minimum experiments that provide complete insight of the process.

Statistical significance of influencing variables and their interaction were determined to control the process. Analysis of variance

(ANOVA) test was conducted to validate the model statistically. Mathematical equation was derived separately for mould hardness and

permeability, which are expressed as a non-linear function of input variables based on the collected experimental input-output data. The

developed model prediction accuracy for practical usefulness was tested with 10 random experimental conditions. The decision variables

for higher mould hardness and permeability were determined using desirability function approach. The prediction results were found to be

consistent with experimental values.

Go to article

Authors and Affiliations

M.G.C. Patel
M.B. Parappagoudar
G.R. Chate
A.S. Deshpande
Download PDF Download RIS Download Bibtex

Abstract

In this work, the free vibration behaviour of A357 composite plate reinforced with dual particle size (DPS) (3 wt.% coarse + 3 wt.% fine, 4 wt.% coarse + 2 wt.% fine, and 2 wt.% coarse + 4 wt.% fine) SiC is evaluated using the finite element method. To this end, first-order shear deformation theory (FSDT) has been used. The equations of motion have been derived using Hamilton’s principle and the solution has been obtained through condensation technique. A thorough parametric study was conducted to understand the effect of reinforcement size and weight fraction, boundary conditions, aspect ratio and length-to-width ratio of plate geometry on natural frequencies of A357/DPS-SiC composite plates. Results reveal significant influence of all the above variables on natural frequency of the composite plates. In all the cases, A357 composite plate reinforced with 4 wt.% coarse and 2 wt.% fine SiC particles displayed the highest natural frequency owing to its higher elastic and rigidity modulus. Further, the natural frequencies increase with decrease in aspect ratio of the plate geometry. Natural frequency also decreases with increase in the number of free edges. Lastly, increasing the length-to-width ratio drastically improves the natural frequency of the plates.
Go to article

Bibliography

[1] Raju R. S. S., Panigrahi, M.K., Ganguly R.I., & Srinivasa Rao G. (2019). Tribological behaviour of al-1100-coconut shell ash (CSA) composite at elevated temperature, Tribology International. 129, 55-66.
[2] Bishop, J.E., & Kinra, V.K. (1995). Analysis of elastothermodynamic damping in particle-reinforced metal-matrix composites. Metallurgical and Materials Transactions A. 26(11), 2773-2783.
[3] Challer, R.S. (2003). Metal matrix composites, a smart choice for high damping materials. Journal of Alloys and Compounds. 355(1-2), 131-135.
[4] Ehsani, R., & Seyed Reihani, S.M. (2004). Aging behaviour and tensile properties of squeeze cast Al 6061/SiC metal matrix composites. Scientia Iranica. 11(4), 392-397.
[5] Zhang, J., Perez, R.J., Wong, C.R., & Lavernia, E.J. (1994). Effects of secondary phases on the damping behaviour of metals, alloys and metal matrix composites. Materials Science and Engineering: R: Reports. 13 (8), 325-389.
[6] Lavernia, E.J., Perez, R.J., & Zhang, J. (1995). Damping behavior of discontinuously reinforced ai alloy metal-matrix composites. Metallurgical and Materials Transactions A. 26 (11), 2803-2818.
[7] Wang, J., Li, Z., Fan, G., Pan, H., Chen, Z., & Zhang, D. (2012). Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Materialia. 66(8), 594-597.
[8] Qian, L. F., Batra, R. C., & Chen, L. M. (2004). Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov–Galerkin method. Composites Part B: Engineering. 35(6-8), 685-697.
[9] Sharma, S.C., Krishna, M., & Narasimha Murthy, H.N. (2004). Studies on the effect of residual thermal stresses on thermal expansion and damping behaviour of Al6061/ALBITE MMCs. Adv. in Vibration Engg., 3(4), 320-331 (2004).
[10] Sastry, S., Krishna, M., & Uchil, J. (2001). A study on damping behaviour of aluminite particulate reinforced ZA-27 alloy metal matrix composites. Journal of Alloys and Compounds. 314(1-2), 268-274.
[11] Zhang, J., Perez, R.J., Wong, C.R., & Lavernia, E.J. (1994). Effects of secondary phases on the damping behaviour of metals, alloys and metal matrix composites. Materials Science and Engineering: R: Reports. 13(8), 325-389.
[12] James, D.W. (1969). High damping metals for engineering applications. Materials Science and Engineering. 4(1), 1-8.
[13] Zhang, J., Perez, R.J., & Lavernia, E.J. (1993). Documentation of damping capacity of metallic, ceramic and metal-matrix composite materials. Journal of Materials Science. 28(9), 2395-2404.
[14] Zhang, J., Perez, R.J., & Lavernia, E.J. (1994). Effect of SiC and graphite particulates on the damping behavior of metal matrix composites. Acta Metallurgica et Materialia. 42(2), 395-409.
[15] Kang, C.S., Maeda, K., Wang, K.J., & Wakashima, K. (1998). Dynamic Young's modulus and internal friction in particulate SiC Al composites. Acta Materialia, 46(4), 1209-1220.
[16] Zhang, J., Perez, R.J., Gupta, M., & Lavernia, E.J. (1993). Damping behavior of particulate reinforced 2519 Al metal matrix composites. Scripta Metallurgica et Materialia, 28(1), 91-96.
[17] Ersulu S.O., & Aydogdu M, Mechanical and Vibration analysis of Al/SiC composite plates. Ankara International Aerospace Conference AIAC-070 (2007).
[18] El-Kady, E. Y., Mahmoud, T. S., El-Betar, A. A., & Abdel-Aziz, M. (2012). Dynamic behaviour of Cast A356/Al2O3 aluminum metal matrix nano composites. Materials Sciences and Applications. 3(11), 815-820.
[19] Ravikanth Raju, P., & Venkat Reddy, R. (2018). Mechanical characterization and free vibration of composite laminated plates. International Journal of Mechanical Engineering and Technology (IJMET) 9(9), 186-191.
[20] Soleymani Shishvan, S., & Asghari, A. H. (2017). Effects of particle shape and size distribution on particle size-dependent flow strengthening in metal matrix composites. Scientia Iranica B, 24 (3), 1091-1099.
[21] Civalek, Ö., Numanoğlu, H. M., & Mercan, K. (2019). Finite element model and size dependent stability analysis of boron nitride and silicon carbide nanowires/nanotubes. Scientia Iranica, 26(4), 2079-2099.
[22] Khan, A.A., Naushad Alam, M., & Wajid, M. (2016). Finite element modelling for static and free vibration response of functionally graded beam. Latin American Journal of Solids and Structures, 13, 690-714.
[23] Zuo, H., Yang, Z., Chen, X., Xie, Y., & Zhang, X. (2014). Bending, free vibration and buckling analysis of functionally graded plates via wavelet finite element method. Computers, Materials and Continua (CMC), 44 (3), 167-204.
[24] An, X., Liu, Y., Huang, F., & Jia, Q. (2018). MPFEM modeling on the compaction of Al/SiC composite powders with core/shell structure. Powder Technol. DOI: 10.5772/IntechOpen.76563, pp. 21-43, (2018).
[25] Bozkurt, Y., & Ersoy, S. (2016). Determining the vibration behavior of metal matrix composite used in aerospace industry by FEM. Vibroengineering PROCEDIA, 9, 29-32.
[26] Santhosh, N., & Kempaiah, U. N. (2018). Vibration characterization of SiCp and fly ash dispersion strengthened aluminium 5083 composites. Journal of Aerospace Engineering & Technology. 7(3), 61-72.
[27] Kushwaha, P.K., & Vimal, J. (2014). Study of vibration analysis of laminated composite plates using FEM. International Journal of Advanced Mechanical Engineering. 4(6), 675-680.
[28] Alaneme, K.K., & Fajemisin, A.V. (2018). Evaluation of the damping behaviour of Al-Mg-Si alloy-based composites reinforced with steel, steel and graphite, and silicon carbide particulates. Engineering Science and Technology, an International Journal. 21(4), 798-805.
[29] Gholami, R., & Ansari, R. (2019). On the vibration of postbuckled functionally graded-carbon nanotube reinforced composite annular plates. Scientia Iranica, 26(6), 3857-3874.
[30] Vinyas, M., Sunny, K.K., Harursampath, D., Nguyen-Thoi, T., & Loja, M.A.R. (2019). Influence of interphase on the multi-physics coupled frequency of three-phase smart magneto-electro-elastic composite plates. Composite Structures. 226, 111254.
[31] Vinyas, M., Sandeep, A.S., Nguyen-Thoi, T., Ebrahimi, F., & Duc, D.N. (2019). A finite element-based assessment of free vibration behaviour of circular and annular magneto-electro-elastic plates using higher order shear deformation theory. Journal of Intelligent Material Systems and Structures. 30(16), 2478-2501.
[32] Vinyas, M., Nischith, G., Loja, M.A.R., Ebrahimi, F., & Duc, N.D. (2019). Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory. Composite Structures. 214, 132-142.
[33] Avinash, L., Ram Prabhu, T., & Bontha, S. (2016). The Effect on the dry sliding wear behavior of gravity cast A357 reinforced with dual size silicon carbide particles. Applied Mechanics and Materials. 829, 83-89.
[34] Lakshmikanthan, A., Bontha, S., Krishna, M., Koppad, P. G., & Ramprabhu, T. (2019). Microstructure, mechanical and wear properties of the A357 composites reinforced with dual sized SiC particles. Journal of Alloys and Compounds.786, 570-580.
[35] Avinash Lakshmikanthan, T. Ram Prabhu, Udayagiri Sai Babu, Praveennath G. Koppad, Manoj Gupta, Munishamaiah Krishna , Srikanth Bontha (2020). The effect of heat treatment on the mechanical and tribological properties of dual size SiC reinforced A357 matrix composites. Journal of Materials Research and Technology. 9(3), May June 2020, 6434-6452
[36] Matweb.com.2020.Matweb-The Online Materials Information Resource.[online] Available at :< http://www.matweb.com/search/DataSheet.aspx?
[37] Mahesh, V., Sagar, P. J., & Kattimani, S. (2018). Influence of coupled fields on free vibration and static behavior of functionally graded magneto-electro-thermo-elastic plate. Journal of Intelligent Material Systems and Structures. 29 (7), 1430-1455.
[38] Herrmann, J., Kühn, T., Müllenstedt, T., Mittelstedt, S., & Mittelstedt, C. (2018). Closed-form approximate solutions for the local buckling behaviour of composite laminated beams based on third order shear deformation theory. Advances in Mechanics of Materials and Structural Analysis. 80, 175-205.
[39] Vinyas, M., Kattimani, S.C. (2018). Finite element evaluation of free vibration characteristics of magneto-electro-elastic plates in hygrothermal environment using higher order shear deformation theory. Composite Structures. 202, 1339-1352.
[40] Vinyas, M. (2018). A higher order free vibration analysis of Carbon Nanotube-reinforced Magneto-electro-elastic plates using finite element methods. Composites Part-B. 158, 286-301.
[41] Mohammadimehr, M., Okhravi, S.V. & Akhavan Alavi, S.M. (2018). Free vibration analysis of magneto-electro-elastic cylindrical composite panel reinforced by various distributions of CNTs with considering open and closed circuits boundary conditions based on FSDT. Journal of Vibration and Control. 24(8), 1551-1569.
[42] Shen, H.S. (2009). Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Composite Structures. 91, 9-19.
[43] Klimenda, F., & Soukup, J. (2017). Modal analysis of thin aluminium plate. Procedia Engineering. 177, 11-16.
Go to article

Authors and Affiliations

A. Lakshmikanthan
1 2
V. Mahesh
3
ORCID: ORCID
R.T. Prabhu
4
M.G.C. Patel
5
S. Bontha

  1. Department of Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, Mangalore-575025, Karnataka, India
  2. Department of Mechanical Engineering, Nitte Meenakshi Institute of Technology, Bangalore, India-560064
  3. Nonlinear Multifunctional Composites Analysis and Design (NMCAD) Laboratory, Department of Aerospace Engineering, Indian Institute of Science, Bangalore, India-560012
  4. CEMILAC, Defence R&D Organisation, Bangalore, India-560093
  5. Department of Mechanical Engineering, PES Institute of Technology and Management, Shivamogga, India-577204

This page uses 'cookies'. Learn more