Search results

Filters

  • Journals
  • Date

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Three-layered, annular plate with viscoelastic core is subjected to loads acting in the plane of the plate facings. One formulates the dynamic, stability problem concerning the action of time-dependent compressive stress on a plate with imperfection. This problem has been solved. One created the basic system of differential equations in which the approximation finite difference method was used for calculations. The essential analysis of the problem was concentrated on evaluation of the influence of the plate imperfection rate and the rate of plate loading growth on the results of calculation of critical parameters at the moment of loss of plate stability. It determines the analysed problem of sensitivity of the plate to imperfection and loading. In the evaluation of the dynamics of this problem, the dynamic factor defined as the quotient of the critical, dynamic load to the static one was used. The idea of dynamic factor and the type of the accepted criterion of the loss of plate stability were taken from the Volmir's work. The observations were confirmed by comparable results of calculations of plate models built in finite element method using the ABAQUS system. The analysis of the stress state in an exemplary plate model calculated in FEM demonstrated the importance of the strength condition in total evaluation of the plate work. One achieved satisfactory correctness of results in both methods.

Go to article

Authors and Affiliations

Dorota Pawlus
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the response of a three-layered annular plate with damaged laminated facings to the loads acting in their planes. The presented problem concerns the analysis of the combination of global plate failure in the form of buckling with the local micro defects, like fibre or matrix cracks, located in the laminas. The plate structure consists of thin laminated, fibre-reinforced composite facings and a thicker foam core. The matrix and fibre cracks of facings laminas can be transversally symmetrically or asymmetrically located in plate structure. Critical static and dynamic stability analyses were carried out solving the problem numerically and analytically. The numerical results show the static and dynamic stability state of the composite plate with different combinations of damages. The final results are compared with those for undamaged structure of the plate and treated as quasi-isotropic ones. The analysed problem makes it possible to evaluate the use of the non-ideal composite plate structure in practical applications.

Go to article

Bibliography

[1] Y.R. Chen, L.W. Chen and C.C. Wang. Axisymmetric dynamic instability of rotating polar orthotropic sandwich annular plates with a constrained damping layer. Composite Structures, 73(1):290–302, 2006. doi: 10.1016/j.compstruct.2005.01.039.
[2] H.J. Wang, L.W. Chen. Axisymmetric dynamic stability of rotating sandwich circular plates. Journal of Vibration and Acoustics, 126(2):407–415, 2004. doi: 10.1115/1.1688765.
[3] A. Wirowski. Tolerance modelling of dynamics of microheterogeneous annular plates. Monograph of the Technical University of Łódz, Łódz, 2016 (in Polish).
[4] J. Je. Axisymmetric buckling analysis of homogeneous and laminated annular plates. International Journal of Pressure Vessels and Piping, 62(1):153–159, 1995. doi: 10.1016/0308-0161(94)00004-3.
[5] J. Ye. Laminated Composite Plates and Shells. Springer-Verlag, London, 2003.
[6] H.J. Ding and R.Q. Xu. Exact solution for axisymmetric deformation of laminated transversely isotropic annular plates. Acta Mechanica, 153(1-2):169-182, 2002. doi: 10.1007/BF01177450.
[7] R. Lal and R. Rani. Axisymmetric vibrations of composite annular sandwich plates of quadratically varying thickness by harmonic differential quadrature method. Acta Mechanica, 226(5):1993-2012, 2015. doi: 10.1007/s00707-014-1284-0.
[8] J. Lee and C. Soutis. Prediction of impact-induced fibre damage in circular composite plates. Applied Composite Materials, 12(1):109–131, 2005. doi: 10.1007/s10443-004-7767-8.
[9] A. Muc and P. Zuchara. Buckling and failure analysis of FRP faced sandwich plates. Composite Structures, 48(1-3):145–150, 2000. doi: 10.1016/S0263-8223(99)00087-2.
[10] L.P. Khoroshun and D.V. Babich. Stability of plates made of fibrous composite with components subject to long-term damage. I nternational Applied Mechanics, 46(4):573–579, 2010. doi: 10.1007/s10778-010-0343-z.
[11] P. Maimi, P.P. Camanho, J.A. Mayugo, and A. Turon. Matrix cracking and delamination in laminated composites. Part II: Evaluation of crack density and delamination. Mechanics of Materials, 43(3):194–211, 2011. doi: 10.1016/j.mechmat.2011.01.002.
[12] A. Ahmed and L.J. Sluys: Computational modelling of impact damage in laminated composite plates. ECCM-16-th European Conference on Composite Materials, Seville, Spain, 22–26 June, 2014.
[13] F. Tornabene, N. Fantuzzi, M. Bacciocchi, and E.Viola. Mechanical behaviour of damaged laminated composites plates and shells: Higher-order Shear Deformation Theories. Composite Structures, 189:304–329, 2018. doi: 10.1016/j.compstruct.2018.01.073.
[14] F. Tornabene, N. Fantuzzi, and M. Bacciocchi. Linear static behaviour of damaged laminated composite plates and shells. Materials, 10(7):811, 2017. doi: 10.3390/ma10070811.
[15] Q. Meng and Z. Wang. Micromechanical modeling of impact damage mechanisms un unidirectional composite laminates. Applied Composite Materials, 23(5):1099-1116, 2016. doi: 10.1007/s10443-016-9502-7.
[16] A. De Luca, F. Caputo, Z. Sharif Khodaei, and M.H. Aliabadi. Damage characterization of composite plates under low velocity impact using ultrasonic guided waves. Composites Part B: Engineering, 138:168–180, 2018. doi: 10.1016/j.compositesb.2017.11.042.
[17] S.T. Rokotonarivo, C. Payan, J. Moysan, and C. Hochard. Local damage evaluation of a laminate composite plate using ultrasonic birefringence of shear wave. Composites Part B: Engineering, 142:287–292, 2018. doi: 10.1016/j.compositesb.2018.01.006.
[18] A. Ghosh and P.K. Sinha. Dynamic and impact response of damaged laminated composite plates. Aircraft Engineering and Aerospace Technology, 7(1):29–37, 2004. doi: 10.1108/00022660410514982.
[19] K.S. Sivakumaran. Free vibration of annular and circular asymmetric composite laminates. Composite Structures, 11(2):205–226, 1989. doi: 10.1016/0263-8223(89)90059-7.
[20] D. Pawlus. Stability of three-layered annular plate with composite facings. Applied Composite Materials, 24(1):141–158, 2017. doi: 10.1007/s10443-016-9518-z.
[21] D. Pawlus. Evaluation of critical static loads of three-layered annular plates with damaged composite facings. Engineering Transactions, 64(3):613–619, 2016.
[22] D. Pawlus. Dynamic response of three-layer annular plate with damaged composite facings. Archive of Mechanical Engineerig, 65(1):1: 83–105, 2018. doi: 10.24425/119411.
[23] D. Pawlus. Critical state evaluation of three-layered annular plates with symmetry and asymmetry damaged composite structure. Mechcomp 3 – 3rd International Conference on Mechanics of Composites, Bologna, Italy, 4–7 July, 2017.
[24] A. Muc. Mechanics of Fibrous Composites. Księgarnia Akademicka, Kraków, 2003 (in Polish).
[25] C. Volmir. Nonlinear Dynamic of Plates and Shells. Science, Moskwa, 1972 (in Russian).
[26] J. German. Fundamentals of Mechanics of Fibrous Composites. Politechnika Krakowska, Kraków, 1996 (in Polish).
[27] R.M. Jones. Mechanics of Composite Materials. Scripta Book Company, Washington D.C., 1975.
[28] D. Pawlus. Dynamic Stability of Three-Layered Annular Plates with Viscoelastic Core. Scientific Bulletin of the Technical University of Łódz, 1075, Łódz, 2010. (in Polish).
[29] D. Pawlus. Dynamic stability of three-layered annular plates with wavy forms of buckling. Acta Mechanica, 216(1-4):123–138, 2011. doi: 10.1007/s00707-010-0352-3.
[30] D. Pawlus. Solution to the problem of axisymmetric and asymmetric dynamic instability of three-layered annular plates. Thin-Walled Structures, 49(4):660–668, 2011. doi: 10.1016/j.tws.2010.09.013.
[31] Dynamic Stability of Composite Plate Construction, K. Kowal-Michalska, editor. WNT, Warszawa, 2007 (in Polish).
Go to article

Authors and Affiliations

Dorota Pawlus
1

  1. Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, Poland.
Download PDF Download RIS Download Bibtex

Abstract

The paper presents dynamic responses of annular plate composed of three layers. The middle layer of the plate has electrorheological properties expressed by the Bingham body model. The plate is loaded in the plane of facings with time-dependent forces. The electrorheological effect is observed in the area of supercritical plate behaviour. The influence of both material properties and geometrical dimensions of the core on plate behaviour is examined. The problem is solved analytically and numerically using the orthogonalization method and the finite difference method. Comparison of the results obtained using the finite difference and the finite element methods for a plate in critical state is shown. The numerical calculations are carried out for axisymmetric and asymmetric plate modes. The presented diagrams show the plate reaction to the changes in values of plate parameters and indicate that the supercritical control of plate work is possible.

Go to article

Authors and Affiliations

Dorota Pawlus
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the solutions, calculation results and dynamic observations of three-layers, annular plate with thick core subjected to increasing in time load. The presented solutions use approximate methods: orthogonalization method and finite difference method in analytical and numerical solution of the problem, and finite element method. The observed phenomenon of the reduction of critical load values of the plates, in which the buckling mode is not global and there are different additional deflections of respective plate layers was comprehensively analysed in order to evaluate the critical state and supercritical plate behaviour. The critical deformation could have a form with strong deformation in the region of the loaded plate edge. The observation of the dynamic behaviour of plates, which buckling modes have circumferential waves is an important element of the analysis. Presented in this work the analytical and numerical solution to the problem of dynamic plate deflection was generalized on the case of plates with buckling waves in circumferential direction.

Go to article

Bibliography

[1] A. Valera-Medina, A. Giles, D. Pugh, S. Morris, M. Pohl, and A. Ortwein. Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 27:331–340, 2018. doi: 10.1007/s11630-018-1024-1.
[2] K. Tanaka and I. Ushiyama. Thermodynamic performance analysis of gas turbine power plants with intercooler: 1st report, Theory of intercooling and performance of intercooling type gas turbine. Bulletin of JSME, 13(64):1210–1231, 1970. doi: 10.1299/jsme1958.13.1210.
[3] H.M. Kwon, T.S. Kim, J.L. Sohn, and D.W. Kang. Performance improvement of gas turbine combined cycle power plant by dual cooling of the inlet air and turbine coolant using an absorption chiller. Energy, 163:1050–1061, 2018. doi: 10.1016/j.energy.2018.08.191.
[4] A.T. Baheta and S.I.-U.-H. Gilani. The effect of ambient temperature on a gas turbine performance in part load operation. AIP Conference Proceedings, 1440:889–893, 2012. doi: 10.1063/1.4704300.
[5] F.R. Pance Arrieta and E.E. Silva Lora. Influence of ambient temperature on combined-cycle power-plant performance. Applied Energy, 80(3):261–272, 2005. doi: 10.1016/j.apenergy.2004.04.007.
[6] M. Ameri and P. Ahmadi. The study of ambient temperature effects on exergy losses of a heat recovery steam generator. In: Cen, K., Chi, Y., Wang, F. (eds) Challenges of Power Engineering and Environment. Springer, Berlin, Heidelberg, 2007. doi: 10.1007/978-3-540-76694-0_9.
[7] M.A.A. Alfellag: Parametric investigation of a modified gas turbine power plant. Thermal Science and Engineering Progress, 3:141–149, 2017. doi: 10.1016/j.tsep.2017.07.004.
[8] J.H. Horlock and W.A. Woods. Determination of the optimum performance of gas turbines. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214:243–255, 2000. doi: 10.1243/0954406001522930.
[9] L. Battisti, R. Fedrizzi, and G. Cerri. Novel technology for gas turbine blade effusion cooling. In: Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. Volume 3: Heat Transfer, Parts A and B. pages 491–501. Barcelona, Spain. May 8–11, 2006. doi: 10.1115/GT2006-90516.
[10] F.J. Wang and J.S. Chiou. Integration of steam injection and inlet air cooling for a gas turbine generation system. Energy Conversion and Management, 45(1):15–26, 2004. doi: 10.1016/S0196-8904 (03)00125-0.
[11] Z. Wang. 1.23 Energy and air pollution. In I. Dincer (ed.): Comprehensive Energy Systems, pp. 909–949. Elsevier, 2018. doi: 10.1016/B978-0-12-809597-3.00127-9.
[12] Z. Khorshidi, N.H. Florin, M.T. Ho, and D.E. Wiley. Techno-economic evaluation of co-firing biomass gas with natural gas in existing NGCC plants with and without CO$_2$ capture. International Journal of Greenhouse Gas Control, 49:343–363, 2016. doi: 10.1016/j.ijggc.2016.03.007.
[13] K. Mohammadi, M. Saghafifar, and J.G. McGowan. Thermo-economic evaluation of modifications to a gas power plant with an air bottoming combined cycle. Energy Conversion and Management, 172:619–644, 2018. doi: 10.1016/j.enconman.2018.07.038.
[14] S. Mohtaram, J. Lin, W. Chen, and M.A. Nikbakht. Evaluating the effect of ammonia-water dilution pressure and its density on thermodynamic performance of combined cycles by the energy-exergy analysis approach. Mechanika, 23(2):18110, 2017. doi: 10.5755/j01.mech.23.2.18110.
[15] M. Maheshwari and O. Singh. Comparative evaluation of different combined cycle configurations having simple gas turbine, steam turbine and ammonia water turbine. Energy, 168:1217–1236, 2019. doi: 10.1016/j.energy.2018.12.008.
[16] A. Khaliq and S.C. Kaushik. Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2):179–197, 2004. doi: 10.1016/j.apenergy.2003.08.002.
[17] M. Aliyu, A.B. AlQudaihi, S.A.M. Said, and M.A. Habib. Energy, exergy and parametric analysis of a combined cycle power plant. Thermal Science and Engineering Progress. 15:100450, 2020. doi: 10.1016/j.tsep.2019.100450.
[18] M.N. Khan, T.A. Alkanhal, J. Majdoubi, and I. Tlili. Performance enhancement of regenerative gas turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy analysis. Journal of Thermal Analysis and Calorimetry. 144:821–834, 2021. doi: 10.1007/s10973-020-09550-w.
[19] F. Rueda Martínez, A. Rueda Martínez, A. Toleda Velazquez, P. Quinto Diez, G. Tolentino Eslava, and J. Abugaber Francis. Evaluation of the gas turbine inlet temperature with relation to the excess air. Energy and Power Engineering, 3(4):517–524, 2011. doi: 10.4236/epe.2011.34063.
[20] A.K. Mohapatra and R. Sanjay. Exergetic evaluation of gas-turbine based combined cycle system with vapor absorption inlet cooling. Applied Thermal Engineering, 136:431–443, 2018. doi: 10.1016/j.applthermaleng.2018.03.023.
[21] A.A. Alsairafi. Effects of ambient conditions on the thermodynamic performance of hybrid nuclear-combined cycle power plant. International Journal of Energy Research, 37(3):211–227, 2013. doi: 10.1002/er.1901.
[22] A.K. Tiwari, M.M. Hasan, and M. Islam. Effect of ambient temperature on the performance of a combined cycle power plant. Transactions of the Canadian Society for Mechanical Engineering, 37(4):1177–1188, 2013. doi: 10.1139/tcsme-2013-0099.
[23] T.K. Ibrahim, M.M. Rahman, and A.N. Abdalla. Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Engineering, 15:4216–4223, 2011. doi: 10.1016/j.proeng.2011.08.791.
[24] M.N. Khan and I. Tlili. New advancement of high performance for a combined cycle power plant: Thermodynamic analysis. Case Studies in Thermal Engineering. 12:166–175, 2018. doi: 10.1016/j.csite.2018.04.001.
[25] S.Y. Ebaid and Q.Z. Al-hamdan. Thermodynamic analysis of different configurations of combined cycle power plants. Mechanical Engineering Research. 5(2):89–113, 2015. doi: 10.5539/mer.v5n2p89.
[26] R. Teflissi and A. Ataei. Effect of temperature and gas flow on the efficiency of an air bottoming cycle. Journal of Renewable and Sustainable Energy, 5(2):021409, 2013. doi: 10.1063/1.4798486.
[27] A.A. Bazmi, G. Zahedi, and H. Hashim. Design of decentralized biopower generation and distribution system for developing countries. Journal of Cleaner Production, 86:209–220, 2015. doi: 10.1016/j.jclepro.2014.08.084.
[28] A.I. Chatzimouratidis and P.A. Pilavachi. Decision support systems for power plants impact on the living standard. Energy Conversion and Management, 64:182–198, 2012. doi: 10.1016/j.enconman.2012.05.006.
[29] T.K. Ibrahim, F. Basrawi, O.I. Awad, A.N. Abdullah, G. Najafi, R. Mamat, and F.Y. Hagos. Thermal performance of gas turbine power plant based on exergy analysis. Applied Thermal Engineering, 115:977–985, 2017. doi: 10.1016/j.applthermaleng.2017.01.032.
[30] M. Ghazikhani, I. Khazaee, and E. Abdekhodaie. Exergy analysis of gas turbine with air bottoming cycle. Energy, 72:599–607, 2014. doi: 10.1016/j.energy.2014.05.085.
[31] M.N. Khan, I. Tlili, and W.A. Khan. thermodynamic optimization of new combined gas/steam power cycles with HRSG and heat exchanger. Arabian Journal for Science and Engineering, 42:4547–4558, 2017. doi: 10.1007/s13369-017-2549-4.
[32] N. Abdelhafidi, İ.H. Yılmaz, and N.E.I. Bachari. An innovative dynamic model for an integrated solar combined cycle power plant under off-design conditions. Energy Conversion and Management, 220:113066, 2020. doi: 10.1016/j.enconman.2020.113066.
[33] T.K. Ibrahim, M.K. Mohammed, O.I. Awad, M.M. Rahman, G. Najafi, F. Basrawi, A.N. Abd Alla, and R. Mamat. The optimum performance of the combined cycle power plant: A comprehensive review. Renewable and Sustainable Energy Reviews, 79:459–474, 2017. doi: 10.1016/j.rser.2017.05.060.
[34] M.N. Khan. Energy and exergy analyses of regenerative gas turbine air-bottoming combined cycle: optimum performance. Arabian Journal for Science and Engineering, 45:5895–5905, 2020. doi: 10.1007/s13369-020-04600-9.
[35] A.M. Alklaibi, M.N. Khan, and W.A. Khan. Thermodynamic analysis of gas turbine with air bottoming cycle. Energy, 107:603–611, 2016. doi: 10.1016/j.energy.2016.04.055.
[36] M. Ghazikhani, M. Passandideh-Fard, and M. Mousavi. Two new high-performance cycles for gas turbine with air bottoming. Energy, 36(1):294–304, 2011. doi: 10.1016/j.energy.2010.10.040.
[37] M.N. Khan and I. Tlili. Innovative thermodynamic parametric investigation of gas and steam bottoming cycles with heat exchanger and heat recovery steam generator: Energy and exergy analysis. Energy Reports, 4:497–506, 2018. doi: 10.1016/j.egyr.2018.07.007.
[38] M.N. Khan and I. Tlili. Performance enhancement of a combined cycle using heat exchanger bypass control: A thermodynamic investigation. Journal of Cleaner Production, 192:443–452, 2018. doi: 10.1016/j.jclepro.2018.04.272.
[39] M. Korobitsyn. Industrial applications of the air bottoming cycle. Energy Conversion and Management, 43(9-12):1311–1322, 2002. doi: 10.1016/S0196-8904(02)00017-1.
[40] T.K. Ibrahim and M.M. Rahman. optimum performance improvements of the combined cycle based on an intercooler–reheated gas turbine. Journal of Energy Resources Technology, 137(6):061601, 2015. doi: 10.1115/1.4030447.
Go to article

Authors and Affiliations

Dorota Pawlus

Download PDF Download RIS Download Bibtex

Abstract

The paper presents the dynamic behaviour of three-layer annular plates with damaged facings. The plate is composed of thin laminated, fibre-reinforced composite facings and thicker, foam core. Failure of the plate facings is modelled as fibre or matrix cracks. The plate loaded in the plane of facings with quickly increasing radially compressed forces loses its dynamic stability. Evaluation of the critical state of the plate with failures was carried out using both analytical and numerical solutions. The comparison of results between plates with material properties treated as isotropic, quasi-isotropic and composite has been conducted. Presented tables and figures create the image of dynamic responses of examined composite plates with structure failures.

Go to article

Authors and Affiliations

Dorota Pawlus

This page uses 'cookies'. Learn more