Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

W ostatnich latach obserwowany jest rozwój zastosowania fotowoltaiki zarówno na świecie, jak i w warunkach krajowych, a tym samym wzrost wykorzystania instalacji w bilansie odnawialnych źródeł energii (OZE). Nieodłącznie powiązana z tym faktem jest spadkowa tendencja cen modułów fotowoltaicznych. Szczególne rozpowszechnienie zyskują mikroinstalacje prosumeckie o mocy do 10 kWp. Dla maksymalizacji pozyskiwania energii słonecznej przy zastosowaniu w gospodarstwie domowym paneli fotowoltaicznych stosowany jest szereg metod. Jedną z możliwości jest sterowanie nachyleniem ogniw, a tym samym regulacja kąta ich posadowienia. Program priorytetowy Prosument (Program priorytetowy 2016) utworzony na podstawie Ustawy o odnawialnych źródłach energii (Ustawa OZE 2015) w pewien sposób zawęża obszar możliwości manipulacji kątem ustawienia paneli fotowoltaicznych. Kąt ten ma z kolei przełożenie na ustalenie wielkości doborowej montowanej instalacji. W niniejszej pracy autorzy przedstawiają metodykę doboru odpowiedniego kąta nachylenia paneli fotowoltaicznych w celu pozyskania przez użytkownika jak największej ilości promieniowania słonecznego na formę użytecznej energii. Jako obszar badań autorzy przyjęli położenie miasta Kraków. Badania przeprowadzano z wykorzystaniem programu komputerowego Matlab, będącego interaktywnym środowiskiem do wykonywania obliczeń naukowych. Do wykonania symulacji wykorzystano model promieniowania słonecznego Haya, Daviesa, Kluchera, Reindla w skrócie – model HDKR. Autorzy określili optymalne kąty posadowienia w zależności od wyznaczonego profilu zapotrzebowania na energię. W następnym kroku określono wielkości potrzebnej mocy liczonej w kWp/MWh zapotrzebowania na energię dla wytypowanej lokalizacji i kąta nachylenia paneli. Obliczenia wykonane w artykule nie uwzględniają sprawności urządzeń pośredniczących ze względu na ich liniowe zależności
Go to article

Authors and Affiliations

Monika Pepłowska
Piotr Olczak
Download PDF Download RIS Download Bibtex

Abstract

Coal mining is one of the most important sectors of the Polish industry. It can be said that the coal is a national raw material. This results in Poland being a pioneer in the European Union in terms of coal mining as well as its use in the production of electricity and heat. There are many companies in Poland which have been established and developed around the coal mining industry aimed at coal extracting. The operations of those companies depends on the condition of the mining companies and their cooperation with them: commercial, service and advisory, called referred to as “mining supporting companies”. The article focuses on the results of a survey carried out in mining supporting companies, such as mining machinery and equipment manufacturers, mining-related service companies and mining-related research and development institutions. The authors evaluated the relationship and dependence of those companies on the mining industry. It was assumed that the measure of the mining supporting companies condition is the overall quantity of public related payments contributed to the state budget and local budgets. In the article, the authors raised the problem of the size of losses for public finances, as a result of the significant limitations of financial flows from the mining companies. The surveyed companies are those associated with the Polish Mining Chamber of Industry and Commerce. As a result, the authors prepared conclusions regarding the dependence of the mining supporting companies on the situation of the mining subsector.

Go to article

Authors and Affiliations

Lidia Gawlik
Monika Pepłowska
Download PDF Download RIS Download Bibtex

Abstract

Natural gas plays a significant role in the energy structure of many world economies. Many of them are highly dependent on domestic resources exploitation, other on its deliveries from non-domestic directions. In Poland its importance was relatively low, but in recent years we can observe an increase of interest in this raw material. The aim of the paper is to present the role of natural gas as a primary energy carrier and to determine its impact on the sustainable development and energy security of Poland. The role of gas in the European Union restrictions and development of the domestic economy is also a point. Theoretical deliberations are focused on the most important features of the Polish natural gas market. The article presents the most important national regulations concerning the development of the gas sector in Poland. The amount of natural gas resources are shown as well as indigenous production of the fuel and imports, including the directions from which natural gas is imported. Both political and geographical aspects of the directions of natural gas acquisition are discussed. The level and potential abilities of the diversification of the natural gas supply are discussed. The importance of gas storages in underground gas repositories is underlined. The authors point to the increase in the diversification of raw materials in the structure of electricity, heat production and the transition to pro-ecological fuels.

Go to article

Authors and Affiliations

Monika Pepłowska
Lidia Gawlik
Download PDF Download RIS Download Bibtex

Abstract

The raw material economy determines energy security for individual countries in the world. Coal is one of the most important energy carriers for electricity production and heat generation. World market trends of fossil raw materials such as hard coal and lignite were presented. In the European Union a significant decrease in coal and lignite consumption has been observed in recent years. This situation is primarily related to the accelerating decarbonisation policy and support of renewable energy sources, which are considered to be environmentally friendly. The pandemic occurring in recent years has also played an important role in shaping the raw materials market. The author shows the possibilities and directions in which the coal economy has prospects for development and expansion. The amount of the world’s coal resources is presented, as well as the size of the global consumption of the raw material in the 2000–2011 years, specifying in China, India, Asia, the USA and the countries of the European Union. The structure of the coal economy is presented in the light of the policies and laws enacted by the European Union Comission, in particular in Poland, Germany and France. The appearance of the hard coal sector and lignite sector in Poland is described in detail. The size of resources was given in terms of coal classification. The presented data were based on a range of information and reports from world organizations such as the International Energy Agency or British Petroleum.
Go to article

Bibliography


AGEB 2021 – Energy Consumption in Germany 2020. Arbeitsgemeinschaft Energiebilanzen 2021. [Online] https://ag-energiebilanzen.de/4-1-Home.html [Accessed: 2021-05-01].

ARE 2009–2019 – Energy Situation in Poland National Energy Balance 4th Quarter 2009–2019 (Sytuacja Energetyczna w Polsce Krajowy Bilans Energii IV Kwartał 2009–2019) Agencja Rynku Energii (in Polish).

Blaschke, W. and Ozga-Blaschke, U. 2015 – Coking coal as a critical raw material in the EU (Węgiel koksowy surowcem krytycznym w UE). Zeszyty Naukowe IGSMiE PAN 90, pp. 131–143 (in Polish).

BP 2002 – BP Statistical Review of World Energy 2002, June 2002. [Online] https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html [Accessed: 2021-05-01].

BP 2020 – BP Statistical Review of World Energy 2020, June 2020. [Online] https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html [Accessed: 2021-05-01].

Central Statistical Office 2020 – Employment and Wages in the National Economy in 2019 (Zatrudnienie i wynagrodzenia w gospodarce narodowej w 2019 r.). [Online] https://stat.gov.pl/obszary-tematyczne/rynek-pracy/pracujacy-zatrudnieni-wynagrodzenia-koszty-pracy/zatrudnienie-i-wynagrodzenia-w-gospodarce-narodowej -w-2019-roku,1,37.html [Accessed: 2021-05-01] (in Polish).

Euracoal 2006–2020 – Euracoal Market Report. Editions from the years 2006–2020. [Online] https://euracoal.eu/ [Accessed: 2021-06-04].

Euracoal Statistics 2012–2020 – Coal and lignite production and imports in Europe [Online] https://euracoal.eu/info/euracoal-eu-statistics/ [Accessed: 2021-06-04].

European Commission 2020 – A More Ambitious Climate Goal for Europe by 2030 Investing in a Climate Neutral Future for the Benefit of Citizens. [Online] https://ec.europa.eu/ [Accessed: 2021-06-25].

France 2021 – France energy report May 2021. [Online] https://www.enerdata.net/estore/country-profiles/france.html [Accessed: 2021-06-25].

IEA 2021 – Global Energy Review 2021 Assessing the effects of economic recoveries on global energy demand and CO2 emissions in 2021 International Energy Agency 2021. [Online] https://www.iea.org/reports/global-energy-review-2021 [Accessed: 2020-07-24].

IEEFA 2020 – Coal-fired electricity generation in France fell 72% in 2019. Institute for Energy Economics and Financial Analysis [Online]: https://ieefa.org/coal-fired-electricity-generation-in-france-fell-72-in–2019/ [Accessed: 2020-07-24].

Kasztelewicz et al. 2018 – Kasztelewicz, Z., Tajduś, A., Cała, M. Ptak, M. and Sikora, M. 2018. Strategic Conditions for the Future of Brown Coal Mining in Poland. Polityka Energetyczna – Energy Policy Journal 21(4), pp. 155–178. doi : 10.33223/epj/103691.

Kasztelewicz et al. 2018 – Kasztelewicz, Z., Ptak, M. and Sikora, M. 2018. Lignite as the Optimal Energy Raw Material for Poland (Węgiel brunatny optymalnym surowcem energetycznym dla Polski). Zeszyty Naukowe IGSMiE PAN 106, pp. 61–84. doi : 10.24425/124403 (in Polish).

KOBiZE 2019 – National emission balance of SO2, NOx, CO, NH3, NMLZO, dust, heavy metals and POPs for 2015–2017 by SNAP classification. Synthesis report, 2019 (Krajowy bilans emisji SO2, NOx, CO, NH3, NMLZO, pyłów, metali ciężkich i TZO za lata 2015–2017 w układzie klasyfikacji SNAP. Raport syntetyczny, 2019). Krajowy Ośrodek Bilansowania i Zarządzania Emisjami (KOBiZE), Instytut Ochrony Środowiska – Państwowy Instytut Badawczy, Warszawa 2019 (in Polish).

Krawczyk, P. 2020. Evaluation of the situation of hard coal mining in Poland in 2016–2018 using the public income balance method (Ocena stanu górnictwa węgla kamiennego w Polsce w latach 2016–2018 przy wykorzystaniu metody bilansu dochodów publicznych). Przegląd Górniczy 76(4), pp. 44–54 (in Polish).

Młynarski, T. 2014. Energy policy and security in France (Polityka i bezpieczeństwo energetyczne Francji). Teka Kom. Politol. Stos. Międzynar. – OL PAN, 9, pp. 51–62 (in Polish).

Ozga-Blashke, U. 2020. Coking coal in the European green deal strategy. Inżynieria Mineralna 2(2), pp. 87–93.

PEP2040 project – Energy Policy of Poland until 2040 – strategy of fuel and energy sector development (Polityka energetyczna Polski do 2040 r. – strategia rozwoju sektora paliwowo-energetycznego). Warszawa: Ministerstwo Energii, 2019 (in Polish).

PEP2040 – Energy Policy of Poland until 2040 – strategy of fuel and energy sector development (Polityka energetyczna Polski do 2040 r.). Warszawa: Ministerstwo Energii, 2021 (in Polish).

Pepłowska et al. 2017 – Pepłowska, M., Gawlik, L. and Kryzia, D. 2017. Statistical analysis of the relationship between the economic condition of mining supporting companies and the condition of the hard coal mining industry (Analiza statystyczna zależności finansów przedsiębiorstw okołogórniczych od kondycji branży górnictwa węgla kamiennego). Przegląd Górniczy 73(11), pp. 15–22 (in Polish).

PIG-PIB 2020 – Balance of Mineral Reserves and Deposits in Poland As at 31 December 2019 (Bilans zasobów i złóż kopalin w Polsce wg stanu Na 31 XII 2019 r.) Warszawa 2020 (in Polish).

PN-G-97002: 2018-11 Hard coal – Classification – Types (PN-G-97002: 2018-11 Węgiel kamienny – Klasyfikacja – Rodzaje) (in Polish).

Ratajczak, T. and Hycnar, E. 2017. Supporting minerals in lignite deposits (Kopaliny towarzyszące w złożach węgla brunatnego). Kraków: MERRI PAS (in Polish).

SRP 2021 – List of exploration, appraisal and production licences for solid minerals (as at 30 June 2020) (Lista koncesji poszukiwawczych, rozpoznawczych oraz wydobywczych dot. kopalin stałych (stan na dzień 30 czerwca 2020 r.)) Serwis Rzeczypospolitej Polskiej [Online] https://dane.gov.pl/dataset/221,zestawienia-koncesji-udzielonych-przez-ministra-srodowiska/resource/25028/table?page=1&per_page=50&q=brunatny&sort= [Accessed: 2020-07-24] (in Polish).

Tajduś, A. 2021. „QUO VADIS” Polish mining? („QUO VADIS” polskie górnictwo?) Przegląd Górniczy 77(1–3), pp. 7–13 (in Polish).

Wasilewski, P. and Kobel-Najzarek, E. 1973. Structure and properties of hard coal (Budowa i własności węgla kamiennego). Gliwice: Wyd. PŚl (in Polish).

WEO 2019 – World Energy Outlook 2019. [Online] https://www.iea.org/reports/world-energy--outlook–2019 [Accessed: 2020-07-24].

WEO 2021 – World Energy Outlook 2020. [Online] https://www.iea.org/reports/world-energy-outlook–2020/ [Accessed: 2021-07-3].

Zhang et al. 2020 – Zhang, K., Yang, S., Liu, S., Shangguan, J., Du, W., Wang, Z. and Chang, Z. 2020 – New strategy toward household coal combustion by remarkably reducing SO2 emission. American Chemical Society Omega 5(6), pp. 3047–3054.
Go to article

Authors and Affiliations

Monika Pepłowska
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper discusses the idea of combining a photovoltaic system with a heating film system to heat residential buildings. The analysis was performed for a newly built single-family house in Warsaw or its vicinity. The authors have selected the size of the photovoltaic installation, calculated the costs incurred by the user for the installation of a hybrid system, which were additionally compared to the cost of installing a gas installation (gas boiler) used for heating the building. The calculations were made for a single-family house with a usable area of 120 m2, the demand for utility energy for heating purposes in the newly built house was in the range of 10–50 kWh/m2/year. Based on the adopted parameters, the authors evaluated the economic efficiency of both investments (solutions) determining their net present values (NPV). The analysis takes the energy needed only for heating purposes into account.
NPV for a heating system with a gas boiler with an investment outlay EUR 8,000 for buildings purchased for utility energy in the amount of 20 kWh/m2/year and the price for natural gas EUR 0.04 /kWh will be EUR –10,500 (for 15 years, discount rate r = 3%). For the same thermal needs (energy required) of the building, NPV for heating films + photovoltaic (HF + PV) will amount to – EUR 8,100. Comparing the variants will get a EUR 2,400 higher NPV for HF + PV. With a utility energy demand for heating purpose of 50 kWh/m2/year and gas heating installation investment cost of EUR 7,000, the NPV for both variants will be equal for natural gas price = EUR 0.035/kWh.
Go to article

Bibliography

Chwieduk, D. 2009. Recommendation on modelling of solar energy incident on a building envelope. Renewable Energy 34(3), pp. 736–741.
Columbus Energy 2021. Photovoltaic. [Online] https://columbusenergy.pl/ [Accessed: 2021-02-15].
COM(2020) 562 final. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Stepping up Europe’s 2030 climate ambition. Investing in a climate-neutral future for the benefit of our people. [Online] https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0562 [Accssessed: 2021- -05-14].
Gas boilers 2021. [Online] https://kotly.pl/kotly/ [Accessed: 2021-02-16].
Journal of Laws 2015, item 376. Ordinance of the Minister of Infrastructure and Development of February 27, 2015 On the methodology for determining the energy performance of a building or part of a building and energy performance certificates (Dz.U. 2015, poz. 376, Rozporządzenie Ministra Infrastruktury i Rozwoju z dnia 27 lutego 2015 r. W sprawie metodologii wyznaczania charakterystyki energetycznej budynku lub części budynku oraz świadectw charakterystyki energetycznej). Warszawa (in Polish).
JRC European Comission 2017. Photovoltaic Geographical Information System (PVGIS).
Koval et al. 2019a – Koval, V., Sribna, Y. and Gaska, K. 2019. Energy Cooperation Ukraine-Poland to Strengthen Energy Security. E3S Web of Conferences 132, DOI: 10.1051/e3sconf/201913201009.
Koval et al. 2019b – Koval, V., Sribna, Y., Mykolenko, O. and Vdovenko, N. 2019. Environmentalconcept of energy security solutions of local communities based on energy logistics. 19th International Multidisciplinary Scientific GeoConference SGEM 2019, 19(5.3), pp. 283–290, DOI: 10.5593/sgem2019/5.3/S21.036. Kryzia, D. and Pepłowska, M. 2019. The impact of measures aimed at reducing low-stack emission in Poland on the energy efficiency and household emission of pollutants. Polityka Energetyczna – Energy Policy Journal 22(2), pp. 121–132, DOI: 10.33223/epj/109912.
Kryzia et al. 2020 – Kryzia, D., Kopacz, M. and Kryzia, K. 2020. The Valuation of the Operational Flexibility of the Energy Investment Project Based on a Gas-Fired Power Plant. Energies 13(7), DOI: 10.3390/en13071567.
Matuszewska et al. 2017 – Matuszewska, D., Kuta, M. and Górski, J. 2017. Cogeneration – Development and prospect in Polish energy sector. E3S Web of Conferences 14, 01021, DOI: 10.1051/e3sconf/ 20171401021.
Ministry of Climate 2020. Ministry of Climate and Environment 2020. Poland’s energy policy until 2040 (Polityka energetyczna Polski do 2040 r.). [Online] https://www.gov.pl/web/klimat/minister- kurtyka-polityka-energetyczna-polski-do-2040-r-udziela-odpowiedzi-na-najwazniejsze-wyzwania- stojace-przed-polska-energetyka-w-najblizszych-dziesiecioleciach [Accessed: 2021-01-21] (in Polish).
Ministry of Development 2019. Typical Reference Year (Typowy rok referencyjny). [Online] https://archiwum.miir.gov.pl/strony/zadania/budownictwo/charakterystyka-energetyczna-budynkow/dane-do-obliczen-energetycznych-budynkow-1/ [Accessed: 2020-08-10] (in Polish).
Mirowski, T. and Sornek, K. 2015. Potential of prosumer power engineering in Poland by example of micro PV installation in private construction (Potencjał energetyki prosumenckiej w Polsce na przykładzie mikroinstalacji fotowoltaicznych w budownictwie indywidualnym). Polityka Energetyczna – Energy Policy Journal 18(2), pp. 73–84 (in Polish).
Natural Gas Price 2021. [Online] http://www.cena-pradu.pl/gaz.html [Accessed: 2021-02-15].
Shmygol et al. 2020 – Shmygol, N., Schiavone, F., Trokhymets, O., Pawliszczy, D., Koval, V., Zavgorodniy, R. and Vorfolomeiev, A. 2020. Model for assessing and implementing resource-efficient strategy of industry. CEUR Workshop Proceedings, 2713.
Szurlej et al. 2014 – Szurlej, A., Kamiński, J., Janusz, P., Iwicki, K. and Mirowski, T. 2014. Gas-fired power generation in Poland and energy security (Rozwój energetyki gazowej w Polsce a bezpieczeństwo energetyczne). Rynek Energii 6, pp. 33–38 (in Polish).
Tytko, R. 2019. Heating the building by foil and electrical matts (Ogrzewanie budynku za pomocą folii i mat elektrycznych). Aura 8, pp. 18–21 (in Polish).
Żelazna et al. 2020 – Żelazna, A., Gołębiowska, J., Zdyb, A. and Pawłowski, A. 2020. A hybrid vs. on-grid photovoltaic system: Multicriteria analysis of environmental, economic, and technical aspects in life cycle perspective. Energies 13(15), 3978, DOI: 10.3390/en13153978.
Go to article

Authors and Affiliations

Krystian Majchrzak
1 2
Monika Pepłowska
3
ORCID: ORCID
Piotr Olczak
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
  2. Instaway Institute, Warszawa, Poland
  3. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article presents the topic of atmospheric pollution. The authors have presented the most important national air-quality regulations. They have identified measurement stations in Kraków (Poland), collected data from them and conducted their analysis. The aim of the article is to present the research results on developing a statistical model for estimating air pollution in Kraków depending on the changing weather conditions during the year. The authors used the mathematical modelling method to prepare the air-pollution model. The article presents collected data showing the situation prior to the introduction of a number of environmental regulations in the city of Kraków. The paper is based on meteorological data in the form of daily average values of air temperature, wind speed, air humidity, pressure and precipitation. Emission data included the average daily concentrations of the selected air pollutants, including sulfur dioxide (SO2), nitrogen dioxide (NO2), nitrogen oxides (NOx), nitrogen oxide (NO), carbon monoxide (CO), ozone (O3) and particulate matter PM10 and PM2.5. The results of the study indicate that the three most significant factors influencing the level of air pollution (appearing as explanatory changes in the models for each of the pollutants listed) are the value of ambient air temperature (a destimulant, except for ozone), wind speed (a destimulant) and the concentration of each pollutant on the previous day (a stimulant). The article concludes with a summary and conclusions.
Go to article

Authors and Affiliations

Monika Pepłowska
1
ORCID: ORCID
Dominik Kryzia
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

According to the European Environment Agency (EEA 2018), air quality in Poland is one of the worst in Europe. There are several sources of air pollution, but the condition of the air in Poland is primarily the result of the so-called low-stack emissions from the household sector. The main reason for the emission of pollutants is the combustion of low-quality fuels (mainly low-quality coal) and waste, and the use of obsolete heating boilers with low efficiency and without appropriate filters. The aim of the study was to evaluate the impact of measures aimed at reducing low-stack emissions from the household sector (boiler replacement, change of fuel type, and thermal insulation of buildings), resulting from environmental regulations, on the improvement of energy efficiency and the emission of pollutants from the household sector in Poland. Stochastic energy and mass balance models for a hypothetical household, which were used to assess the impact of remedial actions on the energy efficiency and emission of pollutants, have been developed. The annual energy consumption and emissions of pollutants were estimated for hypothetical households before and after the implementation of a given remedial action. The calculations, using the Monte Carlo simulation, were carried out for several thousand hypothetical households, for which the values of the technical parameters (type of residential building, residential building area, unitary energy demand for heating, type of heat source) were randomly drawn from probability distributions developed on the basis of the analysis of the domestic structure of households. The model takes the coefficients of correlation between the explanatory variables in the model into account. The obtained results were multiplied so that the number of hypothetical households was equal to 14.1 million, i.e. the real number of households in Poland. The obtained results allowed for identifying the potential for reducing the emission of pollutants such as carbon dioxide, carbon monoxide, dust, and nitrogen oxides, and improving the energy efficiency as a result of the proposed and implemented measures, aimed at reducing low-stack emission, resulting from the policy.

The potential for emissions of gaseous pollutants is 94% for CO, 49% for NOx, 90% for dust, and 87% for SO2. The potential for improving the energy efficiency in households is around 42%.

Go to article

Authors and Affiliations

Dominik Kryzia
ORCID: ORCID
Monika Pepłowska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This article presents the results of an assessment of the potential for the use of CNG in Poland as a fuel for passenger cars powered by an internal combustion engine fuelled by petrol or diesel. The basis for assessing the potential was an analysis of the economic efficiency of converting a passenger car fuelled by petrol or diesel to a dual-fuel vehicle by installing a CNG system. On the basis of available literature data, the vehicle structure was characterised using the following criteria: vehicle age, engine capacity, car-segment, type of fuel used and kerb weight. The average fuel consumption (petrol or diesel) of the vehicle before conversion was determined on the basis of specially developed statistical models. The conversion and operating costs of a vehicle fuelled with conventional fuel and with CNG (after vehicle conversion) were estimated on the basis of a stochastic simulation model using probability density distributions of vehicle parameters and the Monte Carlo method. The vehicle parameters were estimated so that the obtained set of vehicles reflected the actual structure of passenger cars in Poland. The estimated costs of vehicle conversion (purchase and installation of a CNG system) and its subsequent operating costs made it possible to assess the economic efficiency of the car conversion process. The potential use of CNG as a fuel for combustion cars was estimated by comparing the operating costs of a vehicle before conversion and the operating costs of a vehicle after conversion, taking into account the costs of conversion. Analogous calculations were carried out for the conversion of a vehicle to run on LPG, i.e. the most important competitor to CNG.
Go to article

Authors and Affiliations

Dominik Kryzia
1
ORCID: ORCID
Monika Pepłowska
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

Energy transition is a process that affects entire regions, not only reducing the prevailing socio- -economic conditions but most importantly, creating a new framework of functioning for their inhabitants. The changes that are taking place can be described as territorial stresses, which are factors that affect not only the psychological well-being of residents but also the economic, demographic, technological and ecological conditions of the regions. The article presents the partial results of research work conducted within the EN TRAN CES project. The authors compare two carbon-intensive regions: Kraków Metropolitan Area (high air pollution area) and Silesia (coal mining area). Comparing the results of the two components and thus the research methods: - the identification and systematization of the socio-cultural stress situation (a component describing events relevant to the transformation of the regions from 1945–2022 and the sparing of its significance on the development conditions in the regions; - the assessment of the adaptive capacity of the residents based on their attachment to the place, individual adaptation strategies for resolving tensions and the level of life satisfaction (socio-psychological component).
Go to article

Authors and Affiliations

Wit Hubert
1
ORCID: ORCID
Wojciech Kowalik
2
ORCID: ORCID
Aleksandra Komorowska
1
ORCID: ORCID
Dominik Kryzia
1
ORCID: ORCID
Monika Pepłowska
1
ORCID: ORCID
Lidia Gawlik
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute PAS, Kraków, Poland
  2. AGH University of Krakow, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article presents the results of a study of the determinants of energy transformation of coal-dependent regions. The case study was on the region of Silesia. This region is the main producer of hard coal and coking coal in Poland, with nineteen mines and numerous coal-fired power plants. Silesia is highly industrialized and urbanized, contributing significantly to Poland’s GDP. However, it is also a leader in terms of methane and carbon dioxide emissions. The study used an approach based on Alvin L. Bertrand’s ‘stress-strain’ theory, to investigate the socio-cultural stresses emerging as a result of the interaction of external factors and internal process dynamics within the region itself. Then, using Marc Wolfram’s systems-based analytical framework approach, the current transformative capacity of Silesia was analyzed. The theoretical framework adopted assumes that socio-cultural stress can be inferred from past situations of tension, influencing the social structure of the region and shaping accepted patterns of adaptation to change. Socio-cultural stress emerges as a key determinant of a region’s coping strategy and shapes its ability to transform in the long term. The research approach presented in this article adopts a comprehensive framework that integrates socio-cultural, socio-ecological and technological dimensions, providing a holistic view of a region’s transformation challenges and opportunities. The research was conducted using focus group interviews and a structured interview questionnaire. Participants in the research were individuals representing a diverse community of experts and activists involved in the energy transition process in Silesia, including local government officials, businesses, professional associations and social activists.
Go to article

Authors and Affiliations

Wojciech Kowalik
1
ORCID: ORCID
Wit Hubert
2
ORCID: ORCID
Monika Pepłowska
2
ORCID: ORCID
Dominik Kryzia
2
ORCID: ORCID
Lidia Gawlik
2
ORCID: ORCID
Aleksandra Komorowska
2
ORCID: ORCID

  1. AGH University of Krakow, Kraków, Poland
  2. Mineral and Energy Economy Research Institute PAS, Kraków, Poland

This page uses 'cookies'. Learn more