Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 15
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The influence of the chill on the AlSi7Mg alloy properties after the heat treatment T6, was realised in the system of the horizontally cast plate of dimensions 160x240 mm and thickness of 10 and 15 m. The cooling course in individual casting zones was recorded, which allowed to determine the solidification rate. Castings were subjected to the heat treatment T6 process. Several properties of the alloy such as: hardness BHN, density, tensile strength UTS, elongation %E were determined. The microstructure images were presented and the structural SDAS parameter determined. The performed investigations as well as the analysis of the results allowed to determine the influence zone of the chill. The research shows that there is a certain dependence between the thickness of the casting wall and the influence zone of the chill, being not less than 2g, where g is the casting wall thickness. The next aim of successive investigations will be finding the confirmation that there is the dependence between the casting wall thickness and the influence zone of the chill for other thicknesses of walls. We would like to prove that this principle is of a universal character.

Go to article

Authors and Affiliations

M. Piękoś
J. Zych
Download PDF Download RIS Download Bibtex

Abstract

The ecological factor is very important in shaping properties of alloys. It leads to a limitation or elimination, from the surroundings, of harmful elements from the heavy metals group. The so-called eco-brasses group comprises common lead-free brasses containing 10 to 40% of zinc and arsenic brasses of a high dezincification resistance. Among standardized alloys, CW511L alloy ( acc. to EN standard) or MS-60 alloy (acc. to DIN) can be mentioned. Investigations were performed on two different kinds of metal charges: ingots cast by gravity and the ones obtained in the semi-continuous casting technology with using crystallizers. The casting quality was analysed on the basis of the microstructure images and mechanical properties. The investigations also concerned increasing the corrosion resistance of lead-free alloys. This resistance was determined by the dezincification tendency of alloys after the introduction of alloying additions, i.e. aluminium, arsenic and tin. The investigations focused on the fact that not only alloying additions but also the production methods of charge materials are essential for the quality of produced castings. The introduced additions of aluminium and tin in amounts: 0÷1.2 wt% decreased the dezincification tendency, while arsenic, already in the amount of 0.033 wt%, significantly stopped corrosion, limiting the dezincification process of lead-free CuZn37 brass. At higher arsenic contents, corrosion occurs only within the thin surface layer of the casting (20 μ).

Go to article

Authors and Affiliations

J. Kozana
A. Garbacz-Klempka
M. Piękoś
Download PDF Download RIS Download Bibtex

Abstract

Fatigue investigations of two 4XXX0-series aluminum alloys (acc. PN-EN 1706) within a range of fewer than 104 cycles at a coefficient of cycle asymmetry of R = –1 were performed in the current paper. The so-called modified low-cycle test, which provided additional information concerning the fatigue life and strength of the tested alloys, was also performed. The obtained results were presented in the form of diagrams: stress amplitude σa – number of cycles before damage N. On the basis of the microscopic images of sample fractures, the influence of the observed casting defects on the decrease of cycle numbers at a given level of stress amplitude were analyzed. Based on the images and dimensions of the observed defects, stress intensity factor KI was analytically determined for each. Their numerical models were also made, and stress intensity factor KI was calculated by the finite element method (FEM).

Go to article

Authors and Affiliations

J. Zych
J. Piekło
M. Maj
A. Garbacz-Klempka
M. Piękoś
Download PDF Download RIS Download Bibtex

Abstract

Silicon bronzes are characterised by good mechanical properties and by high corrosion and mechanical wear resistance. The process of sleeve casting by means of the centrifugal casting with the horizontal axis of the mould rotation was analysed. The assessment of the influence of modification and centrifugal casting parameters on the microstructure and mechanical properties of alloys was carried out in the hereby work. Zirconium was applied as a modifier. Speed of rotation of the mould was the variable parameter of the centrifugal casting. The investigation results were summarised on the basis of the microstructure analysis and mechanical properties determination: UTS, proof stress, A10 and BHN. The experiment aimed at finding the information in which way the modification together with changing the pouring parameters influence the mechanical properties of the CuSi3Zn3FeMn alloy.
Go to article

Authors and Affiliations

A. Garbacz-Klempka
J. Kozana
M. Piękoś
M. Papaj
P. Papaj
M. Perek-Nowak
Download PDF Download RIS Download Bibtex

Abstract

The research focuses on assessing the metal content, mainly copper, lead, iron and also silver in metallurgical slag samples from the area

where historical metallurgical industry functioned. In the smelter located in Mogiła, near Krakow (southern Poland), whose operation is

confirmed in sources from 1469, copper was probably refined as well as silver was separated from copper. Based on the change of

chemical and soil phase content and also taking cartographic and historical data into account, considering the restrictions resulting from

the modern land use the area was determined whose geochemical mapping can point to the location of the 15th century Jan Thurzo’s

smelter in Mogiła near Krakow. Moreover, using the same approach with the samples of this kind here as with hazardous waste, an

attempt has been made to assess their impact on the environment. Thereby, taking the geoenvironmental conditions into account, potential

impact of the industrial activity has been assessed, which probably left large scale changes in the substratum, manifested in the structure,

chemical content and soil phase changes. Discovering areas which are contaminated above the standard value can help to identify

historical human activities, and finding the context in artefacts allows to treat geochemical anomalies as a geochronological marker. For

this purpose the best are bed sediments, at present buried in the ground, of historical ditches draining the area of the supposed smelter.

Correlating their qualities with analogical research of archeologically identified slags and other waste material allows for reconstructing

the anthropopressure stages and the evaluation of their effects. The operation of Jan Thurzo’s smelter is significant for the history of

mining and metallurgy of Poland and Central and Eastern Europe.

Go to article

Authors and Affiliations

J. Kozana
M. Piękoś
A. Garbacz-Klempka
Z. Kwak
M. Wardas-Lasoń
Download PDF Download RIS Download Bibtex

Abstract

Cast axes are one of the most numerous categories of bronze products from earlier phases of the Bronze Age found in Poland. They had multiple applications since they were not only used objects such as tools or weapons but also played the prestigious and cult roles.

Investigations of the selected axes from the bronze products treasure of the Bronze Age, found in the territory of Poland, are presented

in the hereby paper. The holder of these findings is the State Archaeological Museum in Warsaw. Metallurgical investigations of axes with bushing were performed in respect of the casting technology and quality of obtained castings. Macroscopic observations allowed to document the remains of the gating system and to assess the range and kind of casting defects. Light microscopy revealed the microstructure character of these relicts. The chemical composition was determined by means of the X-ray fluorescence method with energy dispersion (ED-XRF) and by the scanning electron microscopy with X-ray energy dispersion analysis in micro-areas (SEM-EDS). The shape and dimensions of cores, reproducing inner parts of axes were identified on the basis of the X-ray tomography images. Studies reconstructed production technology of the mould with gating system, determined chemical composition of the applied alloys and casting structures as well as revealed the casting defects being the result of construction and usage of moulds and cores.

Go to article

Authors and Affiliations

P. Długosz
A. Garbacz-Klempka
Z. Kwak
Ł. Karczmarek
J. Kozana
M. Piękoś
M. Perek-Nowak
Download PDF Download RIS Download Bibtex

Abstract

The work presents experiment results from the area of copper casting technology and chosen examples of alloyed copper. At present,

copper casting technology is applied in many branches of industrial manufacturing, especially in the sector of construction,

communications, arms and power engineering. Alloyed copper, containing slight additions of different elements and having special

physio-chemical properties, is used in a special range of applications. Copper technology and alloyed copper analyses have been presented,

these materials being used for cast manufacturing for power engineering. The quality of casts has been assessed, based on their

microstructure analysis, chemical content and the cast properties. During the research, special deoxidizing and modifying agents were

applied for copper and chosen examples of alloyed copper; also exemplary samples were tested with the help of metallographic analysis,

electrical conductivity and gaseous impurities research.

Go to article

Authors and Affiliations

S. Rzadkosz
J. Kozana
M. Piękoś
A. Garbacz-Klempka
M. Kranc
W. Cieślak
Download PDF Download RIS Download Bibtex

Abstract

High prices of tin and its limited resources, as well as several valuable properties characterising Cu-Sn alloys, cause searching for materials of similar or better properties at lower production costs. The influence of various nickel additions to CuSn10 casting bronze and to CuSn8 bronze of a decreased tin content was tested. Investigations comprised melting processes and casting of tin bronzes containing various nickel additions (up to 5%). The applied variable conditions of solidification and cooling of castings (metal and ceramic moulds) allowed to assess these alloys sensitivity in forming macro and microstructures. In order to determine the direction of changes in the analysed Cu-Sn-Ni alloys, the metallographic and strength tests were performed. In addition, the solidification character was analysed on the basis of the thermal analysis tests. The obtained results indicated the influence of nickel in the solidification and cooling ways of the analysed alloys (significantly increased temperatures of the solidification beginning along with increased nickel fractions in Cu-Sn alloys) as well as in the microstructure pattern (clearly visible grain size changes). The hardness and tensile strength values were also changed. It was found, that decreasing of the tin content in the analysed bronzes to which approximately 3% of nickel was added, was possible, while maintaining the same ultimate tensile strength (UTS) and hardness (HB) and improved plasticity (A5).

Go to article

Authors and Affiliations

M. Perek-Nowak
J. Kozana
M. Piękoś
A. Garbacz-Klempka
E. Czekaj
Download PDF Download RIS Download Bibtex

Abstract

This preliminary study characterizes the bronze metalworking on a defensive settlement of the Lusatian culture in former Kamieniec

(Chełmno land, Poland) as it is reflected through casting workshop recovered during recent excavations. Among ready products, the ones

giving evidence of local metallurgy (e.g. casting moulds and main runners) were also identified. With the shrinkage cavities and dendritic

microstructures revealed, the artifacts prove the implementing a casting method by the Lusatian culture metalworkers. The elemental

composition indicates application of two main types of bronzes: Cu-Sn and Cu-Pb. Aside these main alloying additions, some natural

impurities such as silver, arsenic, antimony and nickel were found which may be attributed to the origin of the ore and casting technology.

The collection from Kamieniec was described in terms of its structure and composition. The investigations were made by means of the

energy dispersive X-ray fluorescence spectroscopy (ED-XRF), scanning electron microscopy (SEM) coupled with an energy dispersive Xray

analysis system (EDS) and optical microscopy (OM). In order to fingerprint either local or non-local profile of the alloys, the ED-XRF

data-set was statistically evaluated using a factor analysis (FA).

Go to article

Authors and Affiliations

M. Perek-Nowak
J. Kozana
M. Piękoś
A. Garbacz-Klempka
Ł. Kowalski
J. Gackowski
G. Szczepańska
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses issues related to the technology of melting and processing of copper alloys. An assessment was made of the impact of titanium and iron introduced in the form of pre-alloy - Ti73Fe master alloy on the microstructure and selected properties of pure copper and copper-silicon alloy. There are known examples of the use of titanium and iron additive to the copper alloy. Titanium as an additive introduced to copper alloys to improve their properties is sometimes also applicable. In the first stage of the study, a series of experimental castings were conducted with variable content of Ti73Fe master alloy entering copper in quantities of 5 %, 15 %, 25 % in relation to the mass of the metal charge. In the second stage, a silicon additive was introduced into copper in the amount of about 4 % by weight and 0.5 % and 1 % respectively of the initial Ti73Fe alloy. Thermodynamic phase parameters were modelled using CALPHAD method and Thermo-Calc software, thus obtaining the crystallization characteristics of the test alloys and the percentage of structural components at ambient temperature. Experiments confirmed the validity of the use of Ti73Fe master alloy as an additive. The pre-alloy used showed a favourable performance, both in terms of addition solubility and in the area of improvement of strength properties. Changes were achieved in the microstructure, mainly within the grain, but also in the developed dendrites of the solid solution. Changes occur with the introduction of titanium with iron into copper as well as to two-component silicon bronze.

Go to article

Authors and Affiliations

M. Piękoś
ORCID: ORCID
A. Garbacz-Klempka
ORCID: ORCID
J. Kozana
ORCID: ORCID
P.L. Żak
Download PDF Download RIS Download Bibtex

Abstract

As part of the studies conducted in the field of broadly understood casting of non-ferrous metals, selected results on the impact of variable additions of copper and silicon in aluminium were presented. A series of melts was carried out with copper content kept constant at a level of 2% (1st stage) and 4% (2nd stage) and variable contents of silicon introduced into aluminium. The crystallization characteristics of the examined alloys and the percentage of structural constituents at ambient temperature were obtained by modelling the thermodynamic parameters of individual phases with the CALPHAD method. The microstructure of the obtained alloys was examined and microhardness was measured by the Vickers-Hanemann method. The alloy properties were assessed based on the results of mechanical tests, including ultimate tensile strength (UTS), hardness (BHN) and elongation (E). The machinability of the tested alloys was analyzed in a machinability test carried out by the Keep-Bauer method, which consisted in drilling with a constant feed force.

The obtained results clearly indicate changes in the images of microstructure, such as the reduction in grain size, solution hardening and precipitation hardening. The changes in the microstructure are also reflected in the results of mechanical properties testing, causing an increase in strength and hardness, and plasticity variations in the range of 4 ÷ 16%, mainly due to the introduced additions of copper and silicon. The process of alloy strengthening is also visible in the results of machinability tests. The plotted curves showing the depth of the hole as a function of time and the images of chips produced during the test indicate an improvement in the wear resistance obtained for the tested group of aluminium alloys with the additions of copper and silicon.

Go to article

Authors and Affiliations

J. Kozana
ORCID: ORCID
M. Piękoś
ORCID: ORCID
M. Maj
A. Garbacz-Klempka
ORCID: ORCID
P.L. Żak
Download PDF Download RIS Download Bibtex

Abstract

The studied silicon bronze (CuSi3Zn3Mn1) is characterised by good strength and corrosion resistance due to the alloying elements that are present in it (Si, Zn, Mn, Fe). This study analysed the casting process in green sand moulding, gravity die casting, and centrifugal casting with a horizontal axis of rotation. The influences of Ni and Zr alloying additives as well as the casting technology that was used were evaluated on the alloy’s microstructure and mechanical properties. The results of the conducted research are presented in the form of the influence of the technology (GS, GZ, GM) and the content of the introduced alloy additives on the mechanical parameters (UTS, A10, and Proof Stress, BHN).
The analysis of the tests that were carried out made it possible to determine which of the studied casting technologies had the best mechanical properties. Microstructure of metal poured into metal mould was finer than that which was cast into moulding compound. Mechanical properties of castings made in moulding compound were lower than those that were cast into metal moulds. Increased nickel content affected the BHN parameter.
Go to article

Bibliography

[1] Nnakwo, K. C., Mbah, C. N. & Nnuka, E. E. (2019). Influence of trace additions of titanium on grain characteristics, conductivity and mechanical properties of copper-silicon-titanium alloys. Heliyon. 5(10), e02471, 1-7. DOI: 10.1016/j.heliyon.2019.e02471.
[2] Rzadkosz, S., Kranc, M., Garbacz-Klempka, A., Kozana, J. & Piękoś, M. (2015). Refining processes in the copper casting technology. Metalurgija. 54(1), 259-262.
[3] Wesołowski, K. (1966). Metaloznawstwo. tom III. Warszawa: Państwowe Wydawnictwo Techniczne.
[4] Prowans, S. (1988). Metaloznawstwo. Warszawa: Państwowe Wydawnictwo Naukowe.
[5] Goto, I.; Aso, S., Ohguchi, Ki., Kurosawa, K., Suzuki, H., Hayashi, H. & Shionoya, J. (2019). Deformation behavior of pure copper castings with as-cast surfaces for electrical parts. Journal of Materials Engineering and Performance. 28, 3835-3843. DOI: 10.1007/s11665-019-3865-5.
[6] Bydałek, A.W. & Najman, K. (2006). The reduction melting conduction of Cu-Si slloys. Archives of Foundry. 6(22), 107-110. (in Polish).
[7] Davis, J.R. (Ed.) (2001). Copper and copper alloys. ASM International.
[8] Rowley, M. T. (1984). Casting copper-base alloys. Illinois: American Foundrymen´s Society.
[9] Rzadkosz, S. (2013). Foundry of copper and copper alloys. Kraków: Akapit. (in Polish).
[10] Garbacz-Klempka, A., Kozana, J., Piękoś, M., Papaj, P., Papaj, M. & Perek-Nowak, M. (2018). Influence of modification in centrifugal casting on microstructure and mechanical properties of silicon bronzes. Archives of Foundry Engineering. 3(18), 11-18. DOI: 10.24425/123594.
[11] Romankiewicz, R., Romankiewicz, F. (2016). Research into oxide inclusions in silicon bronze CuSi3Zn3MnFe with the use of X-ray microanalysis. Metallurgy and Foundry Engineering. 42(1), 41-46. DOI: 10.7494/mafe.2016.42.1.41
[12] Tokarski, M. (1985). Metaloznawstwo metali i stopów nieżelaznych w zarysie. Katowice: Wydawnictwo Śląsk.
[13] Kosowski, A. (1996) Metaloznawstwo stopów odlewniczych. Kraków: Wydawnictwo AGH.
[14] Nnakwo, K. C., Osakwe, F. O., Ugwuanyi, B.C., Oghenekowho, P. A., Okeke, I.U. & Maduka, E. A. (2021) Grain characteristics, electrical conductivity, and hardness of Zn-doped Cu–3Si alloys system. SN Applied Sciences. 3(11), 829, 1-10. DOI: 10.1007/s42452-021-04784-1. [15] Adamski, Cz. (1953). Casting bronzes and silicon brasses - technology and application. Warszawa: Państwowe Wydawnictwo Techniczne. (in Polish).
[16] Guharaja, S., Noorul Haq, A. & Karuppannan, K. M. (2006). Optimization of green sand casting process parameters by using Taguchi’s method. The International Journal of Advanced Manufacturing Technology. 30, 1040-1048. DOI: 10.1007/s00170-005-0146-2.
[17] Hirigo, T.H. & Singh, B. (2019). Design and analysis of sand casting process of mill roller. The International Journal of Advanced Manufacturing Technology. 105, 2183-2214. DOI: 10.1007/s00170-019-04270-4.
[18] Sadarang, J., Nayak, R.K. & Panigrahi, I. (2021). Challenges and Future Prospective of Alternative Materials to Silica Sand for Green Sand Mould Casting: A Review. Transactions of the Indian Institute of Metals. 74, 2939-2952. DOI: 10.1007/s12666-021-02370-y.
[19] Shamasundar, S. & Gopalakrishna V. (2004). Gravity die casting. process die design and process optimisation. esi-group, retrieved July 3, 2023 from https://www.esi-group.com/resources/gravity-die-casting-process-die-design-and-process-optimisation.
[20] Halvaee, A. & Talebi, A. (2001). Effect of process variables on microstructure and segregation in centrifugal casting of C92200 alloy. Journal of Materials Processing Technology. 118(1-3), 122-126. DOI: 10.1016/S0924-0136(01)00904-9.
[21] Malhotra, V. & Kumar Y. (2016). Study of process parameters of gravity die casting defects. International Journal of Mechanical Engineering and Technology (IJMET). 7(2), March-April, 208-211.
[22] Balout, B. & Litwin, J. (2012). Mathematical modeling of particle segregation during centrifugal casting of metal matrix composites. Journal of Materials Engineering and Performance. 21, 450.462. DOI: 10.1007/s11665-011-9873-8.
[23] Wang, X., Chen, R., Wang, Q., Wang, S., Li, Y., Su, Y., Xia, Y., Zhou, G., Li, G. & Qu, Y. (2022). Influence of casting temperature and mold preheating temperature on centrifugal casting by numerical simulation. Journal of Materials Engineering and Performance. 32(15), 6786-3809. https://doi.org/10.1007/s11665-022-07608-4.
[24] Predein, V. V., Zhilin, S. G. & Komarov, O. N. (2022). Promising methods for forming the structure and properties of metal obtained by crystallization under the action of centrifugal forces. Metallurgist. 65(11-12), 1311-1323. https://doi.org/10.1007/s11015-022-01277-3.
[25] Sen, S., Muralidhara B. K., & Mukunda, P. G. (2020). Study of flow behaviour in vertical centrifugal casting. Materials Today: Proceedings. 24(2), 1392-1399. DOI: 10.1016/ j.matpr.2020.04.457.
[26] Keerthi Prasad, K.S., Murali, M.S. & Mukunda, P.G. (2010). Analysis of fluid flow in centrifugal casting. Frontiers of Materials Science in China. 4, 103-110. DOI: 10.1007/s11706-010-0005-4.
[27] Wang, X., Chen, R., Wang, Q., Wang S., Li, Y., Xia, Y., Zhou, G., Li, G. & Qu, Y. (2023). Influence of rotation speed and filling time on centrifugal casting through numerical simulation. International Journal of Metalcasting. 17(2), 1326-1339. DOI: 10.1007/s40962-022-00841-6. [28] Wołczyński, W., Ivanova, A. A. & Kwapisiński, P. (2019). On consonance between a mathematical method for the CET prediction and constrained / unconstrained solidification. Procedia Manufacturing. 30, 459-466. DOI: 10.1016/j.promfg.2019.02.065.
[29] Kwapisiński, P. & Wołczyński, W. (2023). Control of the CET localization in continuously cast copper and copper alloys’ ingots. Archives of Foundry Engineering. 23(2), 91-99. DOI: 10.24425/afe.2023.144303.
[30] Wołczyński, W., Lipnicki, Z., Bydałek, A.W. & Ivanova, A. (2016). Structural zones in large static ingot. forecasts for continuously cast brass ingot. Archives of Foundry Engineering. 16(3), 141-146. DOI: 10.1515/afe-2016-0067.

Go to article

Authors and Affiliations

D. Witasiak
1
A. Garbacz-Klempka
1
ORCID: ORCID
M. Papaj
P. Papaj
M. Piękoś
1
ORCID: ORCID
J. Kozana
1
ORCID: ORCID
M. Maj
1
M. Perek-Nowak
1
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Poland
Download PDF Download RIS Download Bibtex

Abstract

One of the most interesting categories of artifacts for archaeometallurgical research includes deposits of bronze items, so-called “metallurgists hoards”. They contain, aside of final products, many fragments of raw material and, moreover, metallurgical tools. An important source for the studies on the history of metallurgical technology is hoard from Przybysław, Greater Poland district.
Thus, the aim of the work is the identification and interpretation of bronze-working practices and strategies adopted by prehistoric communities of the Late Bronze Age and the Early Iron Age (ca. 600 BC). The examined objects are characterized in terms of their design, structure, and chemical composition. The methods chosen for the studies of artifacts include: metallographic macro- and microscopic observations using optical microscopy (OM) and scanning electron microscopy (SEM), the analysis of chemical composition with the methods of energy dispersive X-ray spectroscopy (EDS), and X-ray fluorescence (ED-XRF).
The thermodynamic analysis of the alloys was performed on the basis of the CALPHAD method. The experimental melts allowed to verify the theoretical considerations and to determine the characteristic temperatures of changes.
The old casting technology can be analyzed basing on computer modeling and computer simulation methods. Simulations in the MAGMASOFT® software are a good example to illustrate how to fill a mould cavity with a molten bronze for a hoop ornament. It is also an appropriate tool to determine temperature distribution in a mould. The simulations also show the possible disadvantages with this old technology.
Go to article

Authors and Affiliations

A. Garbacz-Klempka
1
ORCID: ORCID
M. Piękoś
1
ORCID: ORCID
M. Perek-Nowak
2
ORCID: ORCID
J. Kozana
1
ORCID: ORCID
P. Żak
1
ORCID: ORCID
A. Fijołek
1
ORCID: ORCID
P. Silska
3
ORCID: ORCID
M. Stróżyk
3
ORCID: ORCID

  1. AGH University of Science and Technology, Faculty of Foundry Engineering, Historical Layers Research Centre, Kraków, Poland
  2. AGH University of Science and Technology, Faculty of Non Ferrous Metals, Historical Layers Research Centre, Kraków, Poland
  3. Archaeological Museum in Poznań, Poznań, Poland

This page uses 'cookies'. Learn more