Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Although the utilization of pesticides accounted for the group of persistent organic pollutants was banned years ago, a count of pesticides are still directly or indirectly a source of contamination in Europe. One of them, simazine is still allowed for use in the United States. Aim of this experiment was development of soil remediation method which could be utilized for degradation triazine class pesticides – simazine was an example used. A method for soil remediation based on ozonation processes in fluidized bed was successfully utilized for removal of simazine from contaminated soil. For the study soil highly contaminated with simazine up to the concentration of 0.05% w/w was used. Determination of the pesticide levels in soil was performed using extraction and gas chromatography. The method allowed 80% reduction of pesticide concentration level. The degradation of pesticide was accompanied with changes of physicochemical parameters of soil, i.e., decrease of pH and a increase of nitrates concentration. Despite changes in physicochemical properties of the soil, the developed method proved to be highly effective and can be successfully applied on an industrial scale.

Go to article

Authors and Affiliations

Maciej Balawejder
Radosław Józefczyk
Piotr Antos
Marcin Pieniążek
Download PDF Download RIS Download Bibtex

Abstract

The linuron contaminated soil was subjected to remediation using ozone as an oxidant. The experiments were performed both in laboratory and pilot plant installations. Kinetics of linuron degradation was determined for both systems. Moreover, main linuron metabolites were identified, and possible degradation pathway was proposed. The soil remediation was found to be successful, which was verified by chemical and biological tests. The half-life time of linuron in the pilot scale installation was no more than 7.5 h. To verify the efficiency of soil detoxification, a toxicity test was performed, which utilized Eisenia foetida earthworm. The test organisms were exposed for 14 days to the linuron contaminated soil prior and after the remediation procedure. It was observed that in the control group and the group of organisms exposed to the ozonated soil, the survivability was 100%, whereas the earthworms exposed to the linuron contaminated soil that was not ozonated did not survive at all.
Go to article

Bibliography

  1. Abu Ghalwa, N., Hamada, M., Abu Shawish, H. M. & Shubair O. (2016). Electrochemical degradation of linuron in aqueous solution using Pb/PbO2 and C/PbO2 electrodes. Arabian Journal of Chemistry 9, pp. 821–828. DOI:10.1016/j.arabjc.2011.08.006
  2. Antos, P., Józefczyk, R., Kisała, J. & Balawejder, M. (2012). Remediation of imidacloprid contaminated soil - comparison of two different reactors for the ozone treatment. Xe-nobiotics, Soil, Food and Human Health Interactions, Rzeszów ISBN 978-83-7338-785-0, pp. 147-158
  3. Assokeng, T., Noumi, G. B., Adjia, H.Z. & Sieliechi, J. M. (2021). Assessment of the Risk of Contaminating Soil Cultivation Fruits and Vegetables by Linuron Residues in the Market Gardening Zone in Marza in Ngaoundere – Cameroon. Resources and Envi-ronment 11(1): pp. 1-8 DOI:10.5923/j.re.20211101.01
  4. Balawejder, M., Antos, P., Czyjit Kuryło, S., Józefczyk, R. & Pieniążek, M. (2014). A novel metod for remediation of DDT contaminated soil. Ozone Science&Engineering, 36, pp.166-173. DOI:10.1080/01919512.2013.861324
  5. Balawejder, M., Antos, P., Józefczyk, R. & Pieniążek, M. (2016a). A method for remediation of soil contaminated with simazine. Archives of Environmental Protection, 42(3), pp. 41–46. DOI:10.1515/aep-2016-0024
  6. Balawejder, M., Józefczyk, R., Antos, P. & Pieniążek, M. (2016b). Pilot-scale Installation for Remediation of DDT-contaminated soil. Ozone: Science & Engineering, 38, pp. 272-278. DOI:10.1080/01919512.2015.1136556
  7. Barchańska, H., Czaplicka, M. & Kyzioł-Komosińska, J. (2020). Interaction of selected pesticides with mineral and organic soil components. Archives of Environmental Protection, 46 (3), pp. 80–91. DOI:10.24425/aep.2020.134538
  8. Boughattas, I., Hattab, S., Boussetta, H., Sappin-Didier, V., Viarengo, A., Banni, M. & Sforzini, S. (2016). Biomarker responses of Eisenia andrei to a polymetallic gradient near a lead mining site in North Tunisia. Environmental Pollution, 218 pp. 530-541. DOI:10.1016/j.envpol.2016.07.033
  9. Buleandra, M., Popa, D.E., David, I.G., Bacalum, E., David, V. & Ciucu, A.A. (2019). Electrochemical behavior study of some selected phenylurea herbicides at activated pencil graphite electrode. Electrooxidation of linuron and monolinuron. Microchemical Journal, 147, pp. 1109–1116. DOI:10.1016/j.microc.2019.04.042
  10. Fenoll, J., Martínez-Menchón, M., Navarro, G., Vela, N. & Navarro, S. (2013). Photocatalytic degradation of substituted phenylurea herbicides in aqueous semiconductor suspensions exposed to solar energy. Chemosphere, 91, pp. 571–578. DOI:10.1016/j.chemosphere.2012.11.067
  11. Hankard, P.K., Svendsen, C., Wright, J., Weinberg, C., Fishwick, S.K., Spurgeon, D.J. & Weeks, J.M. (2004). Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis. Sci. Total Environ., 330, pp. 9-20. DOI:10.1016/j.scitotenv.2003.08.023
  12. Katsumata, H., Kobayashi, T., Kaneco, S., Suzuki, T. & Ohta, K. (2011) Degradation of linuron by ultrasound combined with photo-Fenton treatment. Chemical Engineering Journal, 166, pp. 468–473. DOI:10.1016/j.cej.2010.10.073
  13. Kuo, S. L. & Wu, E.M.-Y. (2021). Remediation Efficiency of the In Situ Vitrification Method at an Unidentified-Waste and Groundwater Treatment Site. Water, 13, 3594. DOI:10.3390/w13243594
  14. Liu, T., Liu, Y., Fang, K., Zhang, X. & Wang, X. (2020). Transcriptome, bioaccumulation and toxicity analyses of earthworms (Eisenia fetida) affected by trifloxystrobin and trifloxystrobin acid. Environmental Pollution, 265, Part B, 115100. DOI:10.1016/j.envpol.2020.115100
  15. Lowe, C. N. & Butt, K. R. (2007). Earthworm culture, maintenance and species selection in chronic ecotoxicological studies: A critical review. European Journal of Soil Biology, 43, pp. 281-288. DOI:10.1016/j.ejsobi.2007.08.028
  16. Lowe, C.N. & Butt, K.R. (2005). Culture techniques for soil dwelling earthworms: a review. Pedobiologia, 49 (5), pp. 401-413. DOI:10.1016/j.pedobi.2005.04.005
  17. Moore, M.N. (1976). Cytochemical demonstration of latency of lysosomal hydrolases in the digestive cells of the common mussel, Mytilus edulis, and changes induced by thermal stress. Cell. Tissue Res. 175, pp. 279-287. DOI:10.1007/BF00218706
  18. Mussatto, S.I. (2016). Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, ISBN 978-0-12-802323-5 pp. 410-411
  19. OECD Guideline For Testing Of Chemicals No. 207: Earthworm, Acute Toxicity Tests (Eisenia fetida/Eisenia Andrei), OECD 1984. DOI:10.1787/9789264070042-en
  20. OECD Guideline For Testing Of Chemicals No. 222: Earthworm Reproduction Test (Eisenia fetida/Eisenia Andrei), OECD 2004 https://www.oecd.org/env/ehs/testing/Draft-Updated-Test-Guildeline-222-Earthworm-reproduction-Test.pdf
  21. Quan, X., Zhao, X., Chen, S., Zhao, H., Chen, J. & Zhao, Y. (2005). Enhancement of p,p’-DDT photodegradation on soil surfaces using TiO2 induced by UV-light, Chemosphere, 60, pp. 266-273. DOI:10.1016/j.chemosphere.2004.11.044
  22. Rao, Y.F. & Chu, W. (2010). Degradation of linuron by UV, ozonation, and UV/O3 processes—Effect of anions and reaction mechanism. Journal of Hazardous Materials, 180, pp. 514–523. DOI:10.1016/j.jhazmat.2010.04.063
  23. Rosal, R., Gonzalo, M. S., Rodríguez, A., Perdigón-Melón, J.A. & García-Calvo, E. (2010). Catalytic ozonation of atrazine and linuron on MnOx/Al2O3 and MnOx/SBA-15 in a fixed bed reactor. Chemical Engineering Journal, 165, pp. 806–812. DOI:10.1016/j.cej.2010.10.020
  24. Sforzini, S., Moore, M.N., Boeri, M., Bencivenga, M. & Viarengo, A. (2015). Effects of PAHs and dioxins on the earthworm Eisenia andrei: A multivariate approach for biomarker interpretation. Environmental Pollution, 196 pp. 60-71. DOI:10.1016/j.envpol.2014.09.015
  25. Svendsen, C., Spurgeon, D.J., Hankard, P.K. & Weeks, J.M. (2004). A review of lysosomal membrane stability measured by neutral red retention: is it a workable earthworm biomarker?. Ecotoxicology and Environmental Safety, 57, pp. 20–29. DOI:10.1016/j.ecoenv.2003.08.009
  26. Svendsen, C., Meharg, A.A., Freestone, P. & Weeks, J.M. (1996). Use of an earthworm lysosomal biomarker for the ecological assessment of pollution from an industrial plastics fire. Soil Ecology, 3, pp. 99-107. DOI:10.1016/0929-1393(95)00085-2
  27. Spirhanzlova, P., De Groef, B., Nicholson, F.E., Grommen, S.V.H., Marras, G., Sébillot, A., Demeneix, B.A., Pallud-Mothré, S., Lemkine, G.F., Tindall, A.J. & Du Pasquier, D. (2017). Using short-term bioassays to evaluate the endocrine disrupting capacity of the pesticides linuron and fenoxycarb. Comparative Biochemistry and Physiology, Part C, 200, pp. 52–58. DOI:10.1016/j.cbpc.2017.06.006
  28. Swarcewicz, M., Gregorczyk, A. & Sobczak, J. (2013). Comparison of linuron degradation in the presence of pesticide mixtures in soil under laboratory conditions. Environ Monit Assess, 185, pp. 8109–8114. DOI:10.1007/s10661-013-3158-7
  29. Zhao, S., Wang, Y. & Duo, L. (2021). Biochemical toxicity, lysosomal membrane stability and DNA damage induced by graphene oxide in earthworms. Environmental Pollution, 269, 116225. DOI:10.1016/j.envpol.2020.116225
Go to article

Authors and Affiliations

Radosław Józefczyk
1
Piotr Antos
2
Marcin Pieniążek
1
Maciej Balawejder
1

  1. University of Rzeszów, Poland
  2. Rzeszow University of Technology, Poland

This page uses 'cookies'. Learn more