Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Relatively cold die material comes into contact with the substantially higher temperature melt during the casting cycle, causing high thermal fluctuations resulting into the cyclic change of thermal field. The presented contribution is devoted to the assessment of the impact of temperature distribution on individual zones in the die volume. The evaluated parameter is the die temperature. It was monitored at two selected locations with the 1 mm, 2 mm, 5 mm, 10 mm and 20 mm spacing from the die cavity surface to the volume of cover die and ejector die. As a comparative parameter, the melt temperature in the middle of the runner above the measuring point and the melt temperature close to the die face were monitored. Overall, the temperature was monitored in 26 evaluation points. The measurement was performed using the Magmasoft simulation software. The input settings of the casting cycle in the simulation were identical to those in real operation. It was found, that the most heavily stressed die zones by temperature were within the 20 mm from the die face. Above this distance, the heat supplied by the melt passes gradually into the entire die mass without significant temperature fluctuations. To verify the impact of the die cooling on the thermal field, a tempering system was designed to ensure different heat dissipation conditions in individual locations. At the end of the contribution, the measures proposals to reduce the high change of thermal field of dies resulting from the design of the tempering channel are presented. These proposals will be experimentally verified in the following research work.

Go to article

Authors and Affiliations

J. Majerník
M. Podařil
Download PDF Download RIS Download Bibtex

Abstract

The high pressure die casting technology allows the production of complex casts with good mechanical properties, with high production repeatability within narrow tolerance limits. However, the casts are somewhat porous, which may reduce their mechanical properties. There are several recommendations for reducing the porosity of casts, which are aimed at setting the technological parameters of the casting cycle. One of the primary and important ways to reduce the porosity and air entrapment in the melt is a suitable gating system design. Submitted contribution is devoted to assessing the influence of the runner branching geometry on the air entrapment within the cast volume during the filling phase of the casting cycle. Four variants of the gating system for a particular cast are compared with different design of main runner branching. The initial design is based on a real gating system where the secondary runner is connected to the main runner at an angle of 90 °. The modified designs are provided with a continuous transition of the main runner into the secondary ones, with the change in the branching runner radius r1 = 15 mm, r2 = 25 mm and r3 = 35 mm. The air entrapment in the melt is assessed within the cast volume behind the cores, which have been evaluated as a critical points with respect to further mechanical treatment. When designing the structural modification of geometry it was assumed that by branch changing using the radius value r3 = 35 mm, the melt flows fluently, and thus the value of the entrapped air in the volume of the cast will be the lowest. This assumption was disproved. The lowest values of entrapped air in the melt were found in the casts with runner transition designed with radius r1 = 15 mm. The conclusion of the contribution explains the causes of this phenomenon and from a designing point of view it presents proposal for measures to reduce the entrapment of the air in casts.

Go to article

Authors and Affiliations

J. Majerník
ORCID: ORCID
M. Podařil
Download PDF Download RIS Download Bibtex

Abstract

High pressure die casting technology (HPDC) is a method enabling the production of shape-complex casts with good mechanical properties, with high repeatability of production within narrow tolerance limits. However, the casts show, to some extent, basic porosity, which may reduce their mechanical and qualitative properties. One of the main areas to focus on in order to reduce the porosity of casts is the correct design and structure of the gating and overflow system. Submitted article is devoted to the assessment of the connecting channel cross-section design for connecting the overflows to the cast on selected parameters of the casting process. Five different cross-section designs of connecting channels are considered, enabling the removal of gases and vapors from the volume during the molding. The connecting channels are designed with a constant width g = 10mm and variable height h1 = 1.50 mm, h2 = 1.25 mm, h3 = 1.00 mm, h4 = 0.75 mm and h5 = 0.6 mm. The primary monitored parameter is the gas entrapment in selected points of the cast. The following is an evaluation of the pressure conditions change in the mold cavity at the end of the filling mode and local overheating of the mold material just below the surface of the mold face. With regard to the monitored parameters, based on the performed analyzes, the most suitable design solution of the connecting channel is assessed and recommendations for the design and structure of the overflows and their connection to the cast are derived.
Go to article

Bibliography

[1] Gaspar, S., Pasko, J., Majernik, J. (2017). Influence of structure adjustment of gating system of casting mould upon the quality of die cast. Lüdenscheid: RAM-Verlag.
[2] Pasko, J., Gaspar, S. (2014). T echnological factors of die casting. Lüdenscheid: RAM-Verlag.
[3] Ruzbarský, J., Pasko, J., Gaspar, S. (2014). Techniques of Die casting. Lüdenscheid: RAM-Verlag.
[4] Majernik, J. (2019) The issue of the gating system design for permanent dies (Problematika návrhu vtokových soustav permanentních forem pro lití kovů pod tlakem). Stalowa Wola: Wydawnictwo Sztafeta Sp. z.o.o.
[5] ČSN 22 8601. C onstruction of compression casting moulds: Instructions (Formy tlakové licí: Zásady pro navrhování). Praha: Český normalizační institute, 1984. 32.
[6] El-Fotouh, M.R.A., Shash, A.Y. & Gadallah, M.H. (2018). Semi-automated gating system design with optimum gate and overflow positions for aluminum HPDC. In A. Öchsner & H. Altenbach (Eds.) Improved Performance of Materials (37-51). Cham, Switzerland:Springer Verlag. DOI: 10.1007/978-3-319-59590-0_4.
[7] Pinto, H.A., et al. (2019). Improvement and validation of Zamak die casting moulds. In 29th International Conference on Flexible Automation and Intelligent Manufacturing, 24-38 June 2019 (pp. 1547-1557). Limerick; Ireland: Elsevier B.V.. DOI: 10.1016/j.promfg.2020.01.131.
[8] Chavan, R. & Kulkarni, P.S. (2020). Die design and optimization of cooling channel position for cold chamber high pressure die casting machine. In 2nd International Conference on Emerging trends in Manufacturing, Engines and Modelling, 23-24 December 2019 (Article number 012017). Mumbai, India: Institute of Physics Publishing. DOI: 10.1088/1757-899X/810/1/012017.
[9] Dabhole, S.S., Kurundwad, C.A. & Prajapati, S.R. (2017). Design and development of die casting die for rejection reduction. International Journal of Mechanical Engineering and Technology. 8(5), 1061-1070.
[10] Altuncu, E., Doğan, A. & Ekmen, N. (2019). Performance evaluation of different air venting methods on high pressure aluminum die casting process. Acta Physica Polonica A. 135(4), 664-667. DOI: 10.12693/APhysPolA.135.664.
[11] Zhao, X. et al. (2018). Gating system optimization of high pressure die casting thin-wall AlSi10MnMg longitudinal loadbearing beam based on numerical simulation. China Foundry. 15(6), 436-442. DOI: 10.1007/s41230-018-8052-z.
[12] Qin, X.-Y., Su, Y., Chen, J. & Liu, L.-J. (2019). Finite element analysis for die casting parameters in high-pressure die casting process. China Foundry. 16(4), 272-276. DOI: 10.1007/s41230-019-8088-8.
[13] Cleary, P.W., Savage, G., Ha, J. & Prakash, M. (2014). Flow analysis and validation of numerical modelling for a thin walled high pressure die casting using SPH. C omputational Particle Mechanics. 1(3), 229-243. DOI: 10.1007/s40571-014-0025-4.
[14] Majernik, J. & Podaril, M. (2019). Influence of runner geometry on the gas entrapment in volume of pressure die cast. A rchives of Foundry Engineering. 19(4), 33-38. DOI: 10.24425/afe.2019.129626.
[15] Dańko, R., Dańko, J. & Stojek, J. (2015). Experiments on the Model Testing of the 2nd Phase of Die Casting Process Compared with the Results of Numerical Simulation. Archives of Foundry Engineering. 15(4), 21-24. DOI: 10.1515/afe-2015-0072.
[16] Gaspar, S. & Pasko, J. (2016). Pressing Speed, Specific Pressure and Mechanical Properties of Aluminium Cast. A rchives of Foundry Engineering. 16(2), 45-50. DOI: 10.1515/afe-2016-0024
Go to article

Authors and Affiliations

J. Majerník
1
ORCID: ORCID
M. Podařil
1
D. Gojdan
2

  1. Institute of Technology and Business in České Budějovice, Czech Republic
  2. Technical University of Košice, Faculty of Manufacturing Technologies with the Seat in Prešov, Slovak Republic
Download PDF Download RIS Download Bibtex

Abstract

During the casting cycle, the relatively cold material of the mold comes into contact with the significantly higher temperature melt, which causes high temperature fluctuations on the face of the mold and in its volume, which cause cyclic temperature stress. The submitted article is based on conclusions of the article “Evaluation of the temperature distribution of a die casting mold of X38CrMoV5_1 steel”, in which the modification of temperature relations of the mold in the direction from the mold face to its volume was investigated. In current article, the influence of the tempering channel distance on the temperature modification in the volume of high pressure die casting mold is investigated. Three variants of the tempering channels placements with different location respecting the mold cavity were investigated. The temperature was monitored in two selected locations, with distribution of 1mm, 2mm, 5mm, 10mm and 20mm in the direction from the mold cavity surface to the volume of fixed and movable part of the mold. As a comparative parameter, the temperature of the melt in the center of the runner above the measuring point and the temperature of the melt close to the face of the mold were monitored. The measurement was performed using Magmasoft simulation software. It was discovered that up to a distance of 5mm from the face of the mold, a zone with complete heat transit without its accumulation occurs. Above this limit, the mold begins to accumulate heat, and from distance of 20mm from the face of the mold, the heat gradually passes into the entire mass of the mold without significant temperature fluctuations. The propositions derived from the results of the experiments presented at the end of the article will subsequently be experimentally verified in further research works.
Go to article

Bibliography

[1] Ebrahimi, A., Fritsching, U., Heuser, M., Lehmhus, D., Struß, A., Toenjes, A., von Hehl, A. (2020). A digital twin approach to predict and compensate distortion in a High Pressure Die Casting (HPDC) process chain. In Proceedings of the 5th International Conference on System-Integrated Intelligence, 11-13 November 2020 (pp. 144-149). Bremen: Elsevier B.V. DOI: 10.1016/j.promfg.2020.11.026.
[2] Bi, C., Gou, Z. & Xiong, S. (2015). Modeling and simulation for die casting mould filling process using cartesian cut cell approach. International Journal of Cast Metals Research. 28(4), 234-241. DOI: 10.1179/1743133615Y.0000000006.
[3] Choi, J., et al. (2022). Fatigue life prediction methodology of hot work tool steel dies for high-pressure die casting based on thermal stress analysis. Metals. 12(10), 1744, 1-18. DOI: 10.3390/met12101744.
[4] Cao, H., Shen, C., Wang, C., Xu, H. & Zhu, J. (2019). Direct observation of filling process and porosity prediction in high pressure die casting. Materials. 12(7), 1099, 1-19. DOI: 10.3390/ma12071099.
[5] Yu, W., Liang, S., Cao, Y.Y., Li, X.B., Guo, Z.P. & Xiong, S.M. (2017). Interfacial heat transfer behavior at metal/die in finger-plated casting during high pressure die casting process. China Foundry. 14(4), 258-264. DOI: 10.1007/s41230-017-6066-6.
[6] Jiao, X., Liu, C., Wang, J., Guo, Z., Wang, J., Wang, Z., Guo, J. & Xiong, S. (2020). On the characterization of microstructure and fracture in a high-pressure die-casting Al-10 wt%Si alloy. Progress in Natural Science: Materials International. 30(2), 221-228. DOI: 10.1016/j.pnsc.2019.04.008.
[7] Iwata, Y., Dong, S., Sugiyama, Y. & Iwahori, H. (2014). Change in molten metal pressure and its effect on defects of aluminum alloy die castings. Materials Transactions. 55(2), 311-317. DOI: 10.2320/matertrans.F-M2013838.
[8] Majernik, J. & Podaril. M. (2019). Evaluation of the temperature distribution of a die casting mold of X38CrMoV5_1 steel. Archives of Foundry Engineering. 19(2), 107-112. DOI: 10.24425/afe.2019.127125.
[9] Ružbarský, J., Paško, J., & Gašpár, Š. (2014). Technigques of Die Casting. Lüdenscheid: RAM-Verlag.
[10] Trytek, A. Orłowicz, A.W., Tupaj, M., Mróz, M., Markowska, O., Bąk, G. & Abram, T. (2016) The effect of a thin-wall casting mould cavity filling conditions on the casting surface quality. Archives of Foundry Engineering. 16(4), 222-226. DOI: 10.1515/afe-2016-0113.
[11] Gašpár, Š., Paško, J., & Majerník, J. (2017). Infuence of Structure Adjustment of Gating System of Casting Mould upon the Quality of Die Cast. Lüdenscheid: RAM-Verlag.
[12] Noga, P., Tuz, L., Żaba, K. & Zwoliński, A. (2021). Analysis of microstructure and mechanical properties of alsi11 after chip recycling, co-extrusion, and arc welding. Materials. 14(11), 3124, 1-22. DOI: 10.3390/ma14113124.
[13] Majernik, J. Gaspar, S., Podaril, M. & Coranic, T. (2020). Evaluation of thermal conditions at cast-die casting mold interface. MM Science Journal. 2020(November), 4112-4118. DOI: 10.17973/MMSJ.2020_11_2020041.
[14] Karková, M., Majerník, J. & Kmec, J. (2017). Analysis of influencing the macrostrukture and hardness of casting surface layer by changing conditions of crystallization. MM Science Journal. 1910-1913. DOI: 10.17973/MMSJ.2017_12_201720.
[15] Gašpár, Š., Pasko, J., Malik, J., Panda, A., Jurko, J. & Maseenik, J. (2012). Dependence of pressure die casting quality on die casting plunger velocity inside a filling chamber of a pressure die casting machine. Advanced Science Letters. 14(1), 499-502. DOI: 10.1166/asl.2012.3989.
Go to article

Authors and Affiliations

J. Majerník
1
ORCID: ORCID
M. Podaril
1
ORCID: ORCID
M. Majernikova
1

  1. Institute of Technology and Business in České Budějovice, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The production of high pressure die casts also brings difficulties regarding the processing of the waste material. It is mainly formed by runners, overflows and other foundry supplements used and, in the case of machines using the cold chamber, also the remainder from this chamber. As this material is often returned to the production process, we refer to it as return material. In the production process, it is therefore essential to deal with the proportion issue of return material against primary material that can be added to the melt to maintain the required cast properties. The submitted article monitors the quality properties of the alloy, selected mechanical properties of casts and porosity depending on the proportion of the return material in the melt. At the same time, the material savings are evaluated with regards to the amount of waste and the economic burden of the foundries. To monitor the above-mentioned factors, series of casts were produced from the seven melting process variants with a variable ratio of return to the primary material. The proportion ratio of return material in the primary alloy was adjusted from 100% of the primary alloy to 100% of the return material in the melting process. It has been proven that with the increasing proportion of the return material, the chemical composition of the melt changes, the mechanical properties of the alloy decrease and the porosity of the casts increases. Based on the results of the tests and analyzes, the optimal ratio of return and primary material in the melting process has been determined. Considering the prescribed quality of the alloy and mechanical properties, concerning the economic indicator of the savings, the ratio is set at 70:30 [%] in favor of the primary material.
Go to article

Bibliography

[1] ČSN 04 6509. Pressure die-casting. Terminology (Tlakové lití: Názvosloví). Praha: Český normalizační institut, 1978. 71 p.
[2] ČSN 42 1431. Pressure die castings. Technical conditions (Odlitky tlakové: Technické podmínky). Praha: Český normalizační institut, 1982. 57 p.
[3] Ružbarský, J., Paško, J. & Gašpár, Š. (2014) Techniques of Die casting. Lüdenscheid: RAM-Verlag. ISBN: 978-3-942303-29-3.
[4] Gaspar, S. & Pasko, J. (2016). Technological Aspects of Returnable Material Introducing within Die Casting Technology. Tem Journal-Technology Education Management Informatics. 5(4), 441-445. DOI: 10.18421/TEM54-05.
[5] Majerník, J., Podařil, M., Socha, L., Gryc, K. (2019). Implementation aspects of the remelting material in the production of high pressure die casts on the aluminum based alloys. In 28th International Conference on Metallurgy and Materials, 22-24 May 2019 (pp. 1652-1657). Brno, Czech Republic: TANGER Ltd.
[6] Paško, J. & Gašpár, Š. (2014). Technological factors of die casting. Lüdenscheid: RAM-Verlag. ISBN: 978-3-942303-25-5.
[7] Capuzzi, S. & Timelli, G. (2018). Preparation and melting of scrap in aluminum recycling: A review. Metals. 8(4), 249. DOI: 10.3390/met8040249.
[8] Mwema F.M. et al. (2019). Wear characteristics of recycled cast Al-6Si-3Cu alloys. Tribology in Industry. 41(4), 613-621. DOI: 10.24874/ti.2019.41.04.13.
[9] Lazaro-Nebreda J., Patel, J.B., Chang, I.T.H., Stone, I.C., Fan Z. (2019). Solidification processing of scrap Al-alloys containing high levels of Fe. In Joint 5th International Conference on Advances in Solidification Processes, ICASP 2019 and 5th International Symposium on Cutting Edge of Computer Simulation of Solidification, Casting and Refining, CSSCR 2019, 17-21 June 2019 (Article number 012059). Salzburg: Institute of Physics Publishing. DOI: 10.1088/1757-899X/529/1/012059.
[10] Noga, P., Tuz, L., Żaba, K., & Zwoliński, A. (2021). Analysis of microstructure and mechanical properties of alsi11 after chip recycling, co-extrusion, and arc welding. Materials. 14(11), 3124. DOI: 10.3390/ma14113124.
[11] Bolibruchová, D. & Matejka, M. (2018). Analysis of microstructure changes for AlSi9Cu3 Alloy caused by remelting. Manufacturing Technology. 18(6), 883-888. DOI: 10.21062/ujep/195.2018/a/1213-2489/mt/18/6/883.
[12] Bjurenstedt, A., Seifeddine, S. & Jarfors, A.E.W. (2016). The effects of Fe-particles on the tensile properties of Al-Si-Cu alloys. Metals. 6(12), 314. DOI: 10.3390/met6120314.
[13] Fu, J., Yang, D. & Wang, K. (2018). Correlation between the liquid fraction, microstructure and tensile behaviors of 7075 aluminum alloy processed by recrystallization and partial remelting (RAP). Metals. 8(7), 508. DOI: 10.3390/met8070508.
[14] Krolo, J., Lela, B., Ljumović, P. & Bagavac, P. (2019). Enhanced mechanical properties of aluminium alloy EN AW 6082 recycled without remelting. Technicki Vjesnik. 26(5), 1253-1259. DOI: 10.17559/TV-20180212160950.
[15] Wang, K. at al. (2018). Characterization of microstructures and tensile properties of recycled Al-Si-Cu-Fe-Mn alloys with individual and combined addition of titanium and cerium. Scanning. 2018, 3472743. DOI: 10.1155/2018/3472743.
[16] Matejka, M., Bolibruchová, D. & Kuriš, M. (2021). Crystallization of the structural components of multiple remelted AlSi9Cu3 alloy. Archives of Foundry Engineering. 21(2), 41-45. DOI: 10.24425/afe.2021.136096.
Go to article

Authors and Affiliations

S. Gaspar
1
ORCID: ORCID
J. Majerník
2
ORCID: ORCID
A. Trytek
3
ORCID: ORCID
M. Podaril
2
ORCID: ORCID
Z. Benova
2
ORCID: ORCID

  1. Faculty of Manufacturing Technologies of the Technical University of Košice with the seat in Prešov, Slovak Republic
  2. Institute of Technology and Business in České Budějovice, Czech Republic
  3. The Faculty of Mechanics and Technology in Stalowa Wola, Poland

This page uses 'cookies'. Learn more