Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The study was conducted on the Biała Lądecka River which is a mountain river. It is similar to many European mountain rivers in terms of hydromorphology and catchment management. The aim of this study was to determine the bioconcentration factors of heavy metals (Pb, Cd, Hg, Ni, Cr, Cu and Zn) in Ranunculus aquatile (L.) Dumort., Fontinalis antipyretica (L. ex Hedw.), and Lemanea fluviatilis (L.) C.Ag. The content of metals in water, sediment, and submerged plants was determined. The metal concentrations in plants can be arranged as follows: Hg < Cd < Cr < Ni < Cu < Pb <Zn. The highest concentrations of Hg, Ni, Cr, and Cu were observed in F. antipyretica, but the highest concentrations of Pb, Cd, and Zn were in R. aquatile. L. fluviatilis always contained the least amounts of heavy metals. Bioconcentration factors (BCFs) were lowest in L. fluviatilis and highest in F. antipyretica. Among the analyzed metals, plants accumulated the highest amount of Zn, and the least of Hg. The BCFs for Zn were from 24111 (in L. fluviatilis) to 97574 (in R. aquatile), and BCFs for Hg were from 29 (in L. fluviatilis) to 226 (in F. antipyretica).

Go to article

Authors and Affiliations

Przemysław Pokorny
Joanna Pokorny
Wojciech Dobicki
Magdalena Senze
Monika Kowalska-Góralska
Download PDF Download RIS Download Bibtex

Abstract

Water mint (Mentha aquatica L.) belongs to the arsenic tolerant plant species suitable for cultivation

in Central European climate conditions. Therefore, its possible application for remediation of contaminated soil

was investigated in pot and field experiments. Two M. aquatica plants of different origin, i) commercially market-available mint plants, and ii) plants habituated at the arsenic contaminated former mining area in southern

Tuscany (Italy) were tested for their arsenic uptake, transformation, and speciation. The total arsenic concentrations in the experimental soils varied from 21 to 1573 mg As kg-1, the mobile fractions did not exceed 2% of total

soil arsenic. The mint plants originating from the contaminated area were able to remove ~400 µg of arsenic

per pot, whereas the commercial plant removed a significantly lower amount (~300 µg of arsenic per pot). Only

arsenite and arsenate, but no organoarsenic compounds were identified in both stems and leaves. Arsenate was

the predominant arsenic compound and reached up to 80% regardless of the origin of the mint plants. Although

M. aquatica seems to be able to grow in contaminated soils without symptoms of phytotoxicity, its efficiency to

remove arsenic from the soil is limited as can be demonstrated by total elimination of As from individual pots

not exceeding 0.1%. Moreover, the application of plants originating from the contaminated site did not result in

sufficient increase of potential phytoextraction efficiency of M. aquatica. Although not suitable for phytoextraction the M. aquatica plants can be used as vegetation cover of the contaminated soil at the former mining areas

Go to article

Authors and Affiliations

J. Száková
P. Tlustoš
W. Goessler
T. Pokorný
S. Findenig
J. Balík
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with analysis of samples made of Inconel 718 nickel superalloy, produced using direct metal laser sintering (DMLS), known as “sintering”, and precision casting technologies. The theoretical part is focused on the characteristics of producing samples of the nickel superalloy by modern additive methods (those for processing metallic materials) and by the conventional technology of precision casting. The practical part involves the investigation of the mechanical properties and texture of the surfaces of the tested samples. A significant part of this study is devoted to analysis of fracture surfaces and EDX experimental testing of TEM lamella by using of electron microscopy methods. The conclusions of this paper include a discussion, evaluation and explanation of both technologies applied on tested samples. Finally, the main benefits of using modern additive technologies in the design and production of heat-resistant components of turbochargers are discussed.

Go to article

Authors and Affiliations

J. Robl
J. Sedlák
Z. Pokorný
P. Ňuksa
I. Barényi
J. Majerík
Download PDF Download RIS Download Bibtex

Abstract

This article deals with the effect of selected machining parameter values in hard turning of tested OCHN3MFA steel in terms of SEM microstructural analysis of workpiece material, cutting forces, long-term tests, and SEM observations of flank wear VB and crater wear KT of used changeable coated cemented carbide cutting inserts in the processes of performed experiments. OCHN3MFA steel was selected as an experimental (workpiece) material. The selected experimental steel was analyzed prior to hard turning tests to check the initial microstructure of bulk material and subsurface microstructure after hard turning and chemical composition. Study of workpiece material’s microstructure and worn cemented carbide cutting inserts was performed with Tescan Vega TS 5135 scanning electron microscope (SEM) with the X-Ray microanalyzer Noran Six/300. The chemical composition of workpiece material was analyzed with Tasman Q4 surface analyzer. All hard turning experiments of the used specimens were performed under the selected machining parameters in the SU 50A machine tool with the 8th selected individual geometry of coated cementite carbide cutting inserts clamped in the appropriate DCLNR 2525M12-M type of cutting tool holder. During the hard turning technological process of the individual tested samples made of OCHN3MFA steel, cutting forces were measured with a Kistler 9257B piezoelectric dynamometer, with their subsequent evaluation using Dynoware software. After the long-term testing, other experiments and results were also realized, evaluating the influence of selected machining parameters with different cutting insert geometry on the achieved surface quality.
Go to article

Bibliography

  1.  G. Sun, R. Zhou, J. Lu, and J. Mazumder, “Evaluation of defect density, microstructure, residual stress, elastic modulus, hardness and strength of laser-deposited AISI 4340 steel,” Acta Mater., vol. 84, pp. 172–189, 2015, doi: 10.1016/j.actamat.2014.09.028.
  2.  A.K. Sahoo and B. Sahoo, “Experimental investigations on machinability aspects in finish hard turning of AISI 4340 steel using uncoated and multilayer coated carbide inserts,” Measurement, vol. 45, no. 8, pp. 2153–2165, 2012, doi: 10.1016/j.measurement.2012.05.015.
  3.  R. Lalbondre, P. Krishna, and G.C. Mohankumar, “Machinability Studies of Low Alloy Steels by Face Turning Method: An Experimental Investigation,” Procedia Eng., vol. 64, pp. 632–641, 2013, doi: 10.1016/j.proeng.2013.09.138.
  4.  Ş. Baday, H. Başak, and A. Güral, “Analysis of spheroidized AISI 1050 steel in terms of cutting forces and surface quality,” Met. Mater., vol. 54, no. 05, pp. 315–320, 2016, doi: 10.4149/km_2016_5_315.
  5.  R. Meyer, J. Köhler, and B. Denkena, “Influence of the tool corner radius on the tool wear and process forces during hard turning,” Int. J. Adv. Manuf. Technol., vol. 58, no. 9–12, pp. 933–940, 2011, doi: 10.1007/s00170-011-3451-y.
  6.  M.S.H. Bhuiyan, I.A. Choudhury, and M. Dahari, “Monitoring the tool wear, surface roughness and chip formation occurrences using multiple sensors in turning,” J. Manuf. Syst., vol. 33, no. 4, pp. 476–487, 2014, doi: 10.1016/j.jmsy.2014.04.005.
  7.  L.H. Maia, A.M. Abrao, W.L. Vasconcelos, W.F. Sales, and A.R. Machado, “A new approach for detection of wear mechanisms and determination of tool life in turning using acoustic emission,” Tribol. Int., vol. 92, pp. 519–532, 2015, doi: 10.1016/j.triboint.2015.07.024.
  8.  A. Cakan, F. Evrendilek, and V. Ozkaner, “Data-driven simulations of flank wear of coated cutting tools in hard turning,” Mechanics, vol. 21, no. 6, 2016, doi: 10.5755/j01.mech.21.6.12199.
  9.  W.B. Rashid, S. Goel, J.P. Davim, and S.N. Joshi, “Parametric design optimization of hard turning of AISI 4340 steel (69 HRC),” Int. J. Adv. Manuf. Technol., vol. 82, no. 1‒4, pp. 451–462, 2015, doi: 10.1007/s00170-015-7337-2.
  10.  G. Bartarya and S.K. Choudhury, “State of the art in hard turning,” Int. J. Mach. Tools Manuf., vol. 53, no. 1, pp. 1–14, 2012, doi: 10.1016/j. ijmachtools.2011.08.019.
  11.  W. Jiang and A.P. Malshe, “A novel cBN composite coating design and machine testing: A case study in turning,” Surf. Coat. Technol., vol. 206, no. 2‒3, pp. 273–279, 2011, doi: 10.1016/j.surfcoat.2011.07.008.
  12.  B.D. Beake, J.F. Smith, A. Gray, G.S. Fox-Rabinovich, S.C. Veldhuis, and J.L. Endrino, “Investigating the correlation between nano-impact fracture resistance and hardness/modulus ratio from nanoindentation at 25–500°C and the fracture resistance and lifetime of cutting tools with Ti1−xAlxN (x  = 0.5 and 0.67) PVD coatings in milling operations,” Surf. Coat. Technol., vol. 201, no. 8, pp. 4585–4593, 2007, doi: 10.1016/j.surfcoat.2006.09.118.
  13.  A. Cakan, “Real-time monitoring of flank wear behavior of ceramic cutting tool in turning hardened steels,” Int. J. Adv. Manuf. Technol., vol. 52, no. 9‒12, pp. 897–903, 2010, doi: 10.1007/s00170-010-2793-1.
  14.  J. Jaworski and T. Trzepieciński, “Research on durability of turning tools made of low-alloy high-speed steels,” Met. Mater., vol. 54, no. 1, pp. 17–25, 2016, doi: 10.4149/km_2016_1_17.
  15.  W. Zebala, “Tool stiffness influence on the hosen physical parameters on the milling process,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 60, no. 3, pp. 597–604, 2012, doi: 10.2478/v10175-012-0071-0.
  16.  P. Raja, R. Malajamuthi, and M. Sakthivel “Experimental investigation of cryogenically treated HSS tool in turning AISI1045 using fuzzy logic Taguchi approach,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 67, no. 4, pp. 687–696, 2019, doi: 10.24425/bpasts. 2019.130178.
  17.  J. Waszko, “Laser surface remelting of powder metallurgy high speed steel,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no.  6, pp. 1425–1432, 2021, doi: 10.24425/bpasts.2020.135385.
  18.  I. Barényi et al., “Material and technological investigation of machined surfaces of the OCHN3MFA steel,” Met. Mater., vol. 57, no. 02, pp. 131–142, 2020, doi: 10.4149/km_2019_1_131.
Go to article

Authors and Affiliations

Jozef Majerík
1
Igor Barényi
1
Zdenek Pokorný
2
Josef Sedlák
3
Vlastimil Neumann
4
David Dobrocký
2
Aleš Jaroš
3
Michal Krbaťa
1
Jaroslav Jambor
1
Roman Kusenda
1
Miroslav Sagan
1
Jiri Procházka
2

  1. Department of Engineering, Alexander Dubcek University of Trencin, Trencin, Slovak Republic
  2. Department of Mechanical Engineering, University of Defence in Brno, Brno, Czech Republic
  3. Department of Manufacturing Technology, Brno University of Technology, Brno, Czech Republic
  4. Department of Combat and Special Vehicles, University of Defence in Brno, Brno, Czech Republic

This page uses 'cookies'. Learn more