Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The mechanical properties of steel components are controlled by the chemical composition and mechanical treatment to which the steel is submitted. Non-metallic inclusions have a very high influence on the steel quality but secondary metallurgy enables to reduce their content in the steel. Possibilities of secondary metallurgy are relatively extensive but financial situation in Slovak foundries does not enable to make investments in secondary metallurgy in the near future. Accessible means for influencing of steel quality is injection of aninert gas. Main goal of experiments described in the article was verify the influence of blowing of argon into the steel in an electric induction furnace on its cleanness. Duration and flow-rate of argon blowing have a very clearly influence on the final content of non-metallic inclusions. Minimum time of argon blowing necessary for reducing of content of non-metallic inclusions in one tonne electric induction furnace was more than 6 minutes and recommended argon flow rate was 10 litters per minute.
Go to article

Authors and Affiliations

A. Pribulová
Download PDF Download RIS Download Bibtex

Abstract

Foundry dust from blasting and grinding of castings contain a high amount of iron, ergo it is possible its recycling in foundry process. Dust was compacted by briquetting, two kinds of briquettes were prepared (A contained 95% magnetic part of dust from casting blasting +5% bentonite and B contained 95% mixture of dust from casting grinding and magnetic part of dust from casting blasting + 5% bentonite) and used as a part of charge into the electric induction furnace. It was found that addition of briquettes has had an influence of a chemical composition of cast iron above all on content of sulphur, phosphorus and silicon. It was not reflected in decrease in tensile strength and in microstructure. Yield of metal from briquettes was not lower then 70%.
Go to article

Authors and Affiliations

A. Pribulová
P. Futáš
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this study is to identify relationships between the values of the fluidity obtained by computer simulation and by an experimental test in the horizontal three-channel mould designed in accordance with the Measurement Systems Analysis. Al-Si alloy was a model material. The factors affecting the fluidity varied in following ranges: Si content 5 wt.% – 12 wt.%, Fe content 0.15 wt.% – 0.3wt. %, the pouring temperature 605°C-830°C, and the pouring speed 100 g · s–1 – 400 g · s–1. The software NovaFlow&Solid was used for simulations. The statistically significant difference between the value of fluidity calculated by the equation and obtained by experiment was not found. This design simplifies the calculation of the capability of the measurement process of the fluidity with full replacement of experiments by calculation, using regression equation.

Go to article

Authors and Affiliations

P. Futáš
J. Petrík
A. Pribulová
P. Blaško
P. Palfy
Download PDF Download RIS Download Bibtex

Abstract

Blast furnace and cupola furnace are furnace aggregates used for pig iron and cast iron production. Both furnace aggregates work on very similar principles: they use coke as the fuel, charge goes from the top to down, the gases flow against it, etc. Their construction is very similar (cupola furnace is usually much smaller) and the structures of pig iron and cast iron are very similar too. Small differences between cast iron and pig iron are only in carbon and silicon content. The slags from blast furnace and cupola furnace are very similar in chemical composition, but blast furnace slag has a very widespread use in civil engineering, primarily in road construction, concrete and cement production, and in other industries, but the cupola furnace slag utilization is minimal. The contribution analyzes identical and different properties of both kinds of slags, and attempts to explain the differences in their uses. They are compared by the contribution of the blast furnace slag cooled in water and on air, and cupola furnace slag cooled on air and granulated in water. Their chemical composition, basicity, hydraulicity, melting temperature and surface were compared to explain the differences in their utilization.

Go to article

Authors and Affiliations

A. Pribulová
P. Futáš
J. Petrík
M. Pokusová
M. Brzeziński
J. Jakubski
Download PDF Download RIS Download Bibtex

Abstract

Refractories are the basic material for the construction of the lining of a melting furnace used, among other things, in the foundry industry. The article describes a comparative study of the influence of the type of moulding on the quality of the finished refractory product. A method for making products from refractory materials was proposed and a test methodology was developed. The results, based on a classic study of the quality of these materials, confirm a strong influence on the quality of the materials obtained in terms of reduced porosity and homogeneity of pore size.
Go to article

Authors and Affiliations

Alicja Trela
1
ORCID: ORCID
Alena Pribulová
2
ORCID: ORCID
Peter Futas
2
ORCID: ORCID

  1. AGH University of Krakow, Faculty of Foundry Engineering, Al. Mickiewicza 30, 30-059 Kraków, Poland
  2. Technical University Kosice, Department of Metallurgy, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

Refractories are the basic material for the construction of the lining of a melting furnace used, among other things, in the foundry industry. The article describes a comparative study of the influence of the type of moulding on the quality of the finished refractory product. A method for making products from refractory materials was proposed and a test methodology was developed. The results, based on a classic study of the quality of these materials, confirm a strong influence on the quality of the materials obtained in terms of reduced porosity and homogeneity of pore size.
Go to article

Authors and Affiliations

Alicja Trela
ORCID: ORCID
M. Brzeziński
1
ORCID: ORCID
A. Pribulova
2
ORCID: ORCID
Peter Futas
ORCID: ORCID

  1. AGH University of Krakow, Faculty of Foundry Engineering, Al. Mickiewicza 30, 30-059 Krakow, Poland
  2. Technical University, Department of Metallurgy, Kosice, Slovakia

This page uses 'cookies'. Learn more