Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The study attempts to investigate the influence of severe plastic deformation (SPD in the hydrostatic extrusion (HE) process on the anisotropy of the structure and mechanical properties of the AA 6060 alloy. Material in isotropic condition was subjected to a single round of hydrostatic extrusion with three different degrees of deformation (ε  = 1.23, 1.57, 2.28). They allowed the grain size to be fragmented to the nanocrystalline level. Mechanical properties of the AA 6060 alloy, examined on mini-samples, showed an increase in ultimate tensile strength (UTS) and yield strength (YS) as compared to the initial material. Significant strengthening of the material results from high grain refinement in transverse section, from »220 μm in the initial material to »300 nm following the HE process. The material was characterized by the occurrence of structure anisotropy, which may determine the potential use of the material. Static tensile tests of mini-samples showed »10% anisotropy of properties between longitudinal and transverse cross-sections. In the AA6060 alloy, impact anisotropy was found depending on the direction of its testing. Higher impact toughness was observed in the cross-section parallel to the HE direction. The results obtained allow to analyze the characteristic structure created during the HE process and result in more efficient use of the AA 6060 alloy in applications.

Go to article

Authors and Affiliations

S. Przybysz
M. Kulczyk
W. Pachla
J. Skiba
M. Wróblewska
J. Mizera
D. Moszczyńska
Download PDF Download RIS Download Bibtex

Abstract

The presented results describe the effect of severe plastic deformation on the structure and mechanical properties of AA5083 and AA5754 alloys. Both materials were subjected to single hydrostatic extrusion (HE) and cumulative hydrostatic extrusion in the case of AA5083 and a combination of plastic deformation by equal-channel angular pressing (ECAP) with the next HE for AA5754. After the deformation, both alloys featured a homogeneous and finely divided microstructure with average grain size deq = 140 nm and 125 nm for AA5083 and AA5754, respectively. The selection of plastic forming parameters enabled a significant increase in the UTS tensile strength and YS yield stress in both alloys – UTS =  510 MPa and YS = 500 MPa for alloy AA5083 after cumulative HE, and 450 MPa and 440 MPa for alloy AA5754 after the combination of ECAP and HE, respectively. It has been shown on the example of AA5083 alloy that after the deformation the threads of the fasteners made of this material are more accurate and workable at lower cutting speeds, which saves the cutting tools. The resultant properties of AA5083 and AA5754 alloys match the minimum requirements for the strongest Al-Zn alloys of the 7xxx series, which, however, due to the considerably lower corrosion resistance, can be replaced in many responsible structures by the AA5xxx series Al-Mg alloys presented in this paper.

Go to article

Authors and Affiliations

M. Kulczyk
J. Skiba
W. Pachla
J. Smalc-Koziorowska
S. Przybysz
M. Przybysz

This page uses 'cookies'. Learn more