Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The mining of hard coal deposits at increasingly greater depth leads to an increase in hazards related to the loss of stability of steel arch supports as a result of excessive static and dynamic loads. Camber beam reinforcement via rockbolting is often utilised in order to improve the stability of the yielding steel arch support.

This article presents the results of comparative bench tests of the ŁP10/V36-type steel arch support, tested with and without reinforcement by means of self-drilling bolts with drunken R25 threads, using short joists formed from V32 and V25 sections. It also presents the results of comparative tests of the ŁPP10/4/V29/I-type steel arch support, tested with and without reinforcement by means of rock bolts with trapezoidal Tr22/13 threads, using short joists formed from V25 sections. The obtained test results, in the form of load courses and work values of the steel arch and mixed (arches and rock bolts) support systems, demonstrate that the utilisation of mixed support may significantly improve the stability of workings, particularly immediately after they are driven. A mixed support system quickly achieves its maximum load capacity together with a significant increase in its work value. It may thus prevent the stratification of the rocks surrounding the working, and therefore better utilise the self-supporting capacity of the rock mass. As evidenced by the test results, the mixed support work may be as much as 3.5 times as great compared to the steel arch support at the beginning of the height reduction process initiated by loading – i.e. until its reduction by a presupposed value of 100 mm.

Go to article

Authors and Affiliations

Andrzej Pytlik
Download PDF Download RIS Download Bibtex

Abstract

Difficult geological and mining conditions as well as great stresses in the rock mass result in significant deformations of the rocks that surround the workings and also lead to the occurrence of tremors and rock bursts. Yielding steel arch support has been utilised in the face of hard coal extraction under difficult conditions for many years, both in Poland and abroad. A significant improvement in maintaining gallery working stability is achieved by increasing the yielding support load capacity and work through bolting; however, the use of rock bolts is often limited due to factors such as weak roof rock, significant rock mass fracturing, water accumulation, etc. This is why research and design efforts continue in order to increase yielding steel arch support resistance to both static and dynamic loads. Currently, the most commonly employed type of yielding steel arch support is a support system with frames constructed from overlapping steel arches coupled by shackles. The yield of the steel frame is accomplished by means of sliding joints constructed from sections of various profiles (e.g. V, TH or U-type), which slip after the friction force is exceeded; this force is primarily dependent on the type of shackles and the torque of the shackle screw nuts.

This article presents the static bench testing results of ŁP10/V36/4/A, ŁP10/V32/4/A and ŁP10/V29/4/A yielding steel arch support systems formed from S480W and S560W steel with increased mechanical properties. The tests were conducted using 2 and 3 shackles in the joint, which made it possible to compare the load capacities, work values and characteristics of various types of support. The following shackle screw torques were used for the tests:

• Md = 500 Nm – for shackles utilised in the support constructed from V32 and V36 sections.

• Md = 400 Nm – for shackles utilised in the support constructed from V29 sections.

The shackle screw torques used during the tests were greater compared to the currently utilised standard shackle screw torques within the range of Md = 350-450 Nm.

Dynamic testing of the sliding joints constructed from V32 section with 2 and 3 shackles was also performed. The SD32/36W shackles utilised during the tests were produced in the reinforced versions and manufactured using S480W steel.

Since comparative testing of a rock bolt-reinforced steel arch support system revealed that the bolts would undergo failure at the point of the support yield, a decision was made to investigate the character of the dynamics of this phenomenon. Consequently, this article also presents unique measurement results for top section acceleration values registered in the joints during the conduction of support tests at full scale.

Filming the yield in the joint using high-speed video and thermal cameras made it possible to register the dynamic characteristics of the joint heating process at the arch contact point as well as the mechanical sparks that accompanied it. Considering that these phenomena have thus far been poorly understood, recognising their significance is of great importance from the perspective of occupational safety under the conditions of an explosive atmosphere, especially in the light of the requirements of the new standard EN ISO 80079-36:2016, harmonised with the ATEX directive.

Go to article

Authors and Affiliations

Andrzej Pytlik
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of tests on SHC-40 hydraulic props equipped with two types of valve blocks: standard (with spring steel cylinder) and BZG-2FS (with gas spring). The research was conducted using impact mass of 4,000 kg and with extreme dynamic load of free fall impact mass of 20,000 kg released from different heights h. The dynamic tests involved a camera with the speed of image capture up to 1,200 frames/sec, which made it possible to register the stream of liquid at the dynamic load and to determine the valve opening time. The study conducted on SHC-40 NHR10 props equipped with two types of valve blocks: a standard and the BZG-2FS fast acting relief, showed that the prop with the BZG-2FS block is more suitable and more effective in the case of areas with high risk of mining tremors and rapid stress relief of a seam. Research methodology developed in the Central Mining Institute combines digital recording technique of pressure in a prop and fast registration of the images, and allows to acquire more accurate analysis of dynamic phenomena in the prop during testing.
Go to article

Authors and Affiliations

Andrzej Pytlik
Download PDF Download RIS Download Bibtex

Abstract

The conduction of mining activity under the conditions of rock bursts and rock mass tremors means that designers often utilise support systems comprising various configurations of steel arch, rock bolt and surface support. Particularly difficult geological and mining conditions, when wire mesh does not provide sufficient dynamic resistance, it requires an additional reinforcement with wire rope lacing in the form of steel ropes installed between the bolt ends and fixed to them by means of various rope clamps (e.g. u-bolt clamps). Bench tests were conducted to compare the strength of wire ropes under static and dynamic loading. The tests involved wire ropes with an internal diameter of Ø15.7 mm. Tests under static loading demonstrated that the cable bolts transferred a maximum force Fs max = 289.0 kN without failure, while the energy absorbed until failure was E 1s = 16.6 kJ. A comparative test result analysis for the wire ropes used in the bolt designs revealed that the influence of dynamic loading forces has a significant effect on reducing the rope load capacity, which results in the brittle cracking of the wires in the rope. Although the average dynamic force leading to wire rope failure F dmax = 279.1 kN is comparable to the minimum static force Fmin = 279 kN defined in the relevant standard, the average energy E1d absorbed by the cable bolt until failure is 48% lower than the energy E1s determined for wire rope failure under static loading. Furthermore, cable bolt failure under dynamic loading occurred at an impact velocity of the combined ram and crosshead masses ranging within vp = 1.4-1.5 m/s.
Go to article

Authors and Affiliations

Andrzej Pytlik
1
Mariusz Szot
1
ORCID: ORCID

  1. GIG – National Research Institute, Plac Gwarków 1, 40-166 Katowice, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article presents the results of experimental studies aimed at identifying the forces and acceleration during the riding and braking action of a suspended monorail. The tests were conducted under in situ conditions, in a dip-heading “B” ZG SILTECH in Zabrze. The paper also discusses a test stand, a metering system, and presents the impact of changes in speed on forces in slings of the suspended route. The measurements of selected parameters were performed for three variants: the route, the emergency haulage braking and the braking trolley set braking. The results include waveforms of forces in route slings, and acceleration values acting on the operator and transported load.

Go to article

Authors and Affiliations

Jarosław Andrzej Tokarczyk
Marek Rotkegel
ORCID: ORCID
Andrzej Pytlik
Andrzej Niedworok

This page uses 'cookies'. Learn more