Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 13
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The static series synchronous compensator (SSSC) has demonstrated its capability in providing voltage support and improving power system stability. The objective of this paper is to analyze the dynamic interaction stability mechanism of a hybrid renewable energy system connected with doubly-fed induction generators (DFIGs) and solid oxide fuel cell (SOFC) energy with the SSSC. For this purpose, a linearized mathematical model of this modified hybrid single-machine infinite-bus (SMIB) power system is developed to analyze the physical mechanism of the SSSC in suppressing oscillations and the influence on the dynamic stability characteristics of synchronization. Typical impacting factors such as the series compensation level, the SOFC penetration and tie-line power are considered in the SMIB and two-area systems. The impact of dynamic interactions on enhancing damping characteristics and improving transient performance of the studied systems is demonstrated using eigenvalue analysis and dynamic time-domain simulations, which validates the validity of the proposed physical mechanism simultaneously.
Go to article

Bibliography

[1] Yu S.L., Fernando T., Iu H.-H.-C., Dynamic behavior study and state estimator design for solid oxide fuel cells in hybrid power systems, IEEE Transaction on Power Systems, vol. 31, no. 6, pp. 5190–5199 (2016).
[2] He P., Arefifar S.A., Li C.S., Small signal stability analysis of doubly-fed induction generator-integrated power systems based on probabilistic eigenvalue sensitivity indices, IET Generation, Transmission and Distribution, vol. 13, no. 14, pp. 3127–3137 (2019).
[3] YangY., Zhao J., Liu H., A matrix-perturbation-theory-based optimal strategy for small-signal stability analysis of large-scale power grid, Protection and Control of Modern Power Systems, vol. 3, no. 3, pp. 353–363 (2015).
[4] Liu J., Su C.,Wang C., Influence of solid oxide fuel cell on power system transient stability, The Journal of Engineering, vol. 2019, no. 16, pp. 1081–1086 (2019).
[5] Magdy G., Shabib G., Elbaset A.A., Optimized coordinated control of LFC and SMES to enhance frequency stability of a real multi-source power system considering high renewable energy penetration, Protection and Control of Modern Power Systems, vol. 3, no. 3, pp. 407–421 (2018).
[6] Du W.J., Wang H.F., Cai H., Modelling a grid-connected SOFC power plant into power systems for small-signal stability analysis and control, International Transactions on Electrical Energy Systems, vol. 23, no. 3, pp. 330–341 (2012).
[7] He P., Wu X.X., Li C.S., Damping characteristics improvement and index evaluation of a windpv- thermal-bundled power transmission system by combining PSS and SSSC, Archives of Electrical Engineering, vol. 69, no. 3, pp. 705–721 (2020).
[8] Vikash A., Sanjeev K.M., Power flow analysis and control of distributed FACTS devices in power system, Archives of Electrical Engineering, vol. 67, no. 3, pp. 545–561 (2018).
[9] Bhushan R., Chatterjee K., Effects of parameter variation in DFIG-based grid connected system with a FACTS device for small-signal stability analysis, IET Generation, Transmission and Distribution, vol. 11, no. 11, pp. 2762–2777 (2017).
[10] Verveckken J., Silva F., Barros D., Direct power control of series converter of unified power-flow controller with three-level neutral point clamped converter, IEEE Transactions on Power Delivery, vol. 27, no. 4, pp. 1772–1782 (2012).
[11] Wang L., Vo Q.S., Power Flow Control and Stability Improvement of Connecting an Offshore Wind Farm to a One-Machine In?nite-Bus System Using a Static Synchronous Series Compensator, IEEE Transactions on Sustainable Energy, vol. 4, no. 2, pp. 358–369 (2013).
[12] Das D., Haque M.E., Gargoom A., Operation and control of grid integrated hybrid wind-fuel cell system with STATCOM, 22nd Australasian Universities Power Engineering Conference (AUPEC), Bali, pp. 1–6 (2012).
[13] Mahapatra S., Panda S., Swain S.C., A hybrid firefly algorithm and pattern search technique for SSSC based power oscillation damping controller design, Ain Shams Engineering Journal, vol. 5, no. 4, pp. 1177–1188 (2014).
[14] Al-Sarray M., McCann R.A., Control of an SSSC for oscillation damping of power systems with wind turbine generators, IEEE Power and Energy Society Innovation Smart Grid Technologies Conference (ISGN), Washington, USA, pp. 1–5 (2017).
[15] Darabian M., Jalilvand A., Improving power system stability in the presence of wind farms using STATCOMand predictive control strategy, IETRenewable Power Generation, vol. 12, no. 1, pp. 98–111 (2018).
[16] Movahedi A., Halvaei Niasar A., Gharehpetian G.B., LVRT improvement and transient stability enhancement of power systems based on renewable energy resources using the coordination of SSSC and PSSs controllers, IET Renewable Power Generation, vol. 13, no. 11, pp. 1849–1860 (2019).
[17] Truong D.N., Ngo V.T., Designed damping controller for SSSC to improve stability of a hybrid offshore wind farms considering time delay, International Journal of Electrical Power and Energy Systems, vol. 65, no. 2, pp. 425–431 (2015).
[18] PramodKumar,Namrata K., Voltage control and power oscillation damping of multi-area power system using static synchronous series compensator, Journal of Electrical and Electronics Engineering, vol. 1, no. 5, pp. 26–33 (2012).
[19] Sahu P.R., Hota P.K., Panda S., Power system stability enhancement by fractional order multi input SSSC based controller employing whale optimization algorithm, Journal of Electrical Systems and Information Technology, vol. 5, no. 2018, pp. 326–336 (2018).
[20] Yu Y.N., Electric Power System Dynamics, Academic Press Inc (1983).
[21] He P.,Wen F.S., Ledwich G., An investigation on interarea mode oscillations of interconnected power systems with integrated wind farms, International Journal of Electrical Power and Energy Systems, vol. 78, no. 2, pp. 148–157 (2016).
[22] Wang L., Wang K.H., Dynamic stability analysis of a DFIG-based offshore wind farm connected to a power grid through an HVDC link, IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1501–1510 (2011).
[23] Sedghisigarchi K., Feliachi A., Dynamic and transient analysis of power distribution systems with fuel cells-Part II: Fuel-cell dynamic model, IEEE Transactions on Energy Conversion, vol. 19, no. 2, pp. 429–434 (2016).
[24] Benabid R., Boudour M., Abido M.A., Development of a new power injection model with embedded multi-control functions for static synchronous series compensator, IET Generation, Transmission and Distribution, vol. 6, no. 7, pp. 680–692 (2012).
[25] Pradhan A.C., Lehn P.W., Frequency-domain analysis of the static synchronous series compensator, IEEE Transactions on Power Delivery, vol. 21, no. 1, pp. 440–449 (2006). [26] Kundur P., Power system stability and control, McGraw-Hill Press (1994).

Go to article

Authors and Affiliations

Ping He
1
ORCID: ORCID
Pan Qi
1
ORCID: ORCID
Yuqi Ji
1
ORCID: ORCID
Zhao Li
1
ORCID: ORCID

  1. Zhengzhou University of Light Industry, No.5 Dongfeng Road, Jinshui District, Zhengzhou, 450002, China
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the different mechanical behaviors of layered rocks with different bedding angles during uniaxial compression tests are studied. Numerical simulation models of layered rock are validated based on laboratory tests, and uniaxial compression tests are conducted by using Particle Flow Code (PFC). Using these simulations, the uniaxial compressive strength, failure patterns, development of micro-cracks, and displacement of meso particles are analyzed. When the bedding angle is similar to the failure angle, the macro failure planes develop directly along the beddings, the bedding behavior dictates the behavior of the layered rock, reducing the compressive strength.

Go to article

Authors and Affiliations

Nan Yao
Yi-Cheng Ye
Bin Hu
Wei-Qi Wang
Qi-Hu Wang
Download PDF Download RIS Download Bibtex

Abstract

In order for the working status of the aluminum alloyed hydraulic valve body to be controlled in actual conditions, a new friction and wear

design device was designed for the cast iron and aluminum alloyed valve bodies comparison under the same conditions. The results

displayed that: (1) The oil leakage of the aluminum alloyed hydraulic valve body was higher than the corresponding oil leakage of the iron

body during the initial running stage. Besides during a later running stage, the oil leakage of the aluminum alloyed body was lower than

corresponding oil leakage of the iron body; (2) The actual oil leakage of different materials consisted of two parts: the foundation leakage

that was the leakage of the valve without wear and wear leakage that was caused by the worn valve body; (3) The aluminum alloyed valve

could rely on the dust filling furrow and melting mechanism that led the body surface to retain dynamic balance, resulting in the valve

leakage preservation at a low level. The aluminum alloy modified valve body can meet the requirements of hydraulic leakage under

pressure, possibly constituting this alloy suitable for hydraulic valve body manufacturing.

Go to article

Authors and Affiliations

Li Rong
Chen Lunjun
Su Ming
Zeng Qi
Liu Yong
Download PDF Download RIS Download Bibtex

Abstract

Owing to the dramatic change in the thermal conductivity of 4He when its temperature crosses the transition of superfluid (HeI) and normalfluid (HeII), a sealed-cell with a capillary is used to realize the lambda transition temperature, Tλ. A small heat flow is controlled through the capillary of the sealed-cell so as to realize the coexistence of HeI and HeII and maintain the stay of HeI/HeII interface in the capillary. A stable and flat lambda transition temperature "plateau" is obtained. Because there is a depression effect of Tλ caused by the heat flow through the capillary, a series of heat flows and several temperature plateaus are made and an extrapolation is applied to determine Tλ with zero heat flow. A rhodium-iron resistance thermometer with series number A34 (RIRT A34) has been used in 24 Tλ -realization experiments to derive Tλ with a standard deviation of 0.022mK, which proves the stability and reproducibility of Tλ.

Go to article

Authors and Affiliations

L. Yin
P. Lin
J. Zhao
X. Qi
Download PDF Download RIS Download Bibtex

Abstract

In the external target experiment for heavy ion collisions in the HIRFL-CSR, Multi-Wire Drift Chambers are used to measure the drift time of charged particles to obtain the track information. This 128-channel high precision time measurement module is designed to perform the time digitization. The data transfer is based on a PXI interface to guarantee a high data rate. Test results show that a 100 ps resolution with a data transfer rate up to 40 MBps has been achieved; this module has also been proven to function well with the detector through a commissioning test.

Go to article

Authors and Affiliations

Longfei Kang
Lei Zhao
Jiawen Zhou
Qi An
Download PDF Download RIS Download Bibtex

Abstract

In order to study the effects of various gating systems on the casting of a complex aluminum alloyed multi-way valve body, both software simulation analysis and optimization were carried out. Following, the aluminum alloyed multi-way valve body was cast to check the pouring of the aluminum alloy valve body. The computer simulation results demonstrated that compared to the single side casting mode, the casting method of both sides of the gating system would reduce the filling of the external gas, while the air contact time would be lower. Adversely, due to the pouring on both sides, the melt cannot reach at the same time, leading to the liquid metal speed into the cavity to differ, which affected the liquid metal filling stability. The riser unreasonable setting led to the solidification time extension, resulting in a high amount of casting defects during solidification. Also, both gating systems led the entire casting inconsequential solidification. To overcome the latter problems, a straight gate was set at the middle pouring and the horizontal gate diversion occurred on both sides of pouring, which could provide better casting results for the aluminum alloyed multi-valve body.
Go to article

Authors and Affiliations

Rong Li
Lunjun Chenb
Ming Su
Qi Zeng
Yong Liu
Heng Wang

This page uses 'cookies'. Learn more